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ABSTRACT 

In this paper, we investigate the stability problems for proper Lie derivations associated to the generalized Jensen type 
functional equation 
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INTRODUCTIONANDPRELIMINARIES 

The stability problem of functional equations was originated from a question of Ulam [24]concerning the stability of group 
homomorphisms as follows: 

Let  𝐺1 ,∗  be a group and (𝐺2,◊, 𝑑) be a metric group with the metric 𝑑(⋅,⋅). Givenϵ > 0, does there 

exist a 𝛿 𝜖 > 0 such that if a mapping ℎ ∶ 𝐺1 → 𝐺2 satisfies theinequality 𝑑 ℎ 𝑥 ∗ 𝑦 , ℎ 𝑥 ◊ ℎ 𝑦  <

𝛿(𝜖)for all 𝑥, 𝑦 ∈ 𝐺1, then there is a homomorphism𝐻 ∶ 𝐺1 → 𝐺2with 𝑑 ℎ 𝑥 , 𝐻 𝑦  < 𝜖 for all 𝑥 ∈ 𝐺1? 

If the answer is affirmative, we would say that the equation of a homomorphism 𝐻 𝑥 ∗ 𝑦 = 𝐻 𝑥 ◊ 𝐻 𝑦  is stable. The 

famous Ulam stability problem was partially solved by Hyers [8] for linearfunctional equation of Banach spaces. Let 
𝑓: 𝑋 → 𝑌 be a mapping between Banach spaces such that   

||𝑓 𝑥 + 𝑦 − 𝑓 𝑥 − 𝑓 𝑦 || ≤ ϵ 

for all 𝑥, 𝑦 ∈ 𝑋 and for some ϵ > 0. Then, there exists a unique additive mapping 𝑇: 𝑋 → 𝑌 such that 

||𝑓 𝑥 − 𝑇 𝑥 || ≤ ϵ 

for all 𝑥 ∈ 𝑋. Hyers's theorem was generalized by Aoki [1] for additive mappings and by Rassias [21] for linear mappings 

by considering an unbounded Cauchy difference ||𝑓 𝑥 + 𝑦 − 𝑓 𝑥 − 𝑓 𝑦 || to be controlled by ϵ(||𝑥||𝑝 + ||𝑦||𝑝).Taking into 

consideration a lot of influence of Ulam, Hyers and Rassias on the development of stability problems of functional 
equations, the stability phenomenon that was proved by Rassias may be called the generalized Hyers-Ulam-Rassias 
stability. In 1994, a generalization of Rassias theorem was obtained by Ga vruta [5], who replaced ϵ(||𝑥||𝑝 + ||𝑦||𝑝) by a 

general control function 𝜙 𝑥, 𝑦 . Ca dariu and Radu [3] applied the fixed point method to investigation of the stability of a 

Jensen functional equation. Since then, the stability problems of many algebraic, differential, integral, operatorial 
equations have been extensively investigated [9, 10, 13, 14] and the references therein. 

The theory of finite dimensional complex Lie algebras is an important part of Lie theory. It has several applications in 
physics and connections with other parts of mathematics. With an increasing amount of theory and applications 
concerning Lie algebras of various dimensions, it is becoming necessary to ascertain which tools are applicable for 
handling them. The miscellaneous characteristics of Lie algebras constitute such tools and have also found 
applications.Recently, many research papers have been published about the generalized Hyer-Ulam-Rassias stability of 
homomorphisms and derivations in C*-algebras, Lie C*-algebras, JC*-algebras, CQ*-algebras [4, 7, 11, 15, 16, 18, 19, 20, 
22] and the references therein. 

We recall some basic facts concerning CQ*-algebras [2, 23]. 

Definition 1.1.Let 𝐴 be a linear space and 𝐴0 is a *-algebra contained in 𝐴 as a subspace. 𝐴is called a quasi ∗-algebra 

over 𝐴0 if the following three conditions holds: 

(i) the right and left multiplications of an element of 𝐴 and an element of 𝐴0 are defined and linear; 

(ii) x1 𝑥2𝑎 =  𝑥1𝑥2 𝑎,  (𝑎𝑥1)𝑥2 = 𝑎 𝑥1𝑥2 and𝑥1 𝑎𝑥2 =  𝑥1𝑎 𝑥2 for all 𝑥1 , 𝑥2 ∈ 𝐴 and all 𝑎 ∈ 𝐴0; 

(iii) an involution ∗, which extends the involution of 𝐴0, is defined in 𝐴 with the property that  ab ∗ = 𝑏∗𝑎∗ whenever 

the multiplication is defined. 

Quasi *-algebras arise in natural way as completions of locally convex *-algebras whose multiplication is not jointly 
continuous; in this case, one has to deal with topological quasi *-algebras. A quasi *-algebra (𝐴, 𝐴0) is called  topological if 

a locally convex topology τ on 𝐴 is given such that: 

(i) the involution is continuous and the multiplications are separately continuous; 

(ii) 𝐴0 is dense in 𝐴 𝜏 . 

Throughout this paper, we suppose that a locally convex quasi *-algebra (𝐴, 𝐴0)  is complete. Many authors have 

considered a special class of quasi *-algebras, called proper CQ*-algebras, which arise as completions of C*-algebras.  

Definition 1.2.Let 𝐴 be a Banach module over the C*-algebra 𝐴0 with involution ∗ and C*-norm || ⋅ ||0such that 𝐴0 ⊂ 𝐴. 

Then the pair (𝐴, 𝐴0) is called a proper CQ*-algebra if 

(i) 𝐴0 is dense in 𝐴 with respect to its norm || ⋅ ||; 

(ii)  ab ∗ = 𝑏∗𝑎∗for all 𝑎, 𝑏 ∈ 𝐴, whenever the multiplication is defined; 

(iii) ||𝑦||0 =  sup𝑎∈𝐴,||𝑎||≤1 ||𝑎𝑦||for all 𝑦 ∈ 𝐴0. 

A proper CQ*-algebra (𝐴, 𝐴0)is said to have a unit 𝑒 if there exists an element 𝑒 ∈ 𝐴0   such that 𝑎𝑒 = 𝑒𝑎 = 𝑎 for all 𝑎 ∈ 𝐴. 

A proper CQ*-algebra with an identity is called anunital proper CQ*-algebra. In this paper, we will always assume that 
(𝐴, 𝐴0) is an unital proper CQ*-algebra. 

Definition 1.3.A properCQ*-algebra (𝐴, 𝐴0), endowed with a bilinear multiplication  ⋅,⋅ ∶  𝐴 × 𝐴0 ∪  𝐴0 × 𝐴 → 𝐴, is called 

the Lie bracket, which satisfies the following properties: 

(i)  𝑥1 , 𝑥2 =  − 𝑥2 , 𝑥1 for all  𝑥1 , 𝑥2 ∈  𝐴 × 𝐴0 ∪  𝐴0 × 𝐴 ;  
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(ii)  x1 , [x2 , x3] =   [𝑥1 , 𝑥2], 𝑥3 +  𝑥1, [𝑥2, 𝑥3] for all 𝑥1 , 𝑥2 , 𝑥3 ∈ 𝐴0 

is called a proper Lie CQ*-algebra. 

Now, we consider a mapping 𝑓 ∶  𝐴0 → 𝐴satisfying the following functional equation: 

𝑓( 
1

𝑛
 𝑥𝑖)  𝑛
𝑖=1 +  𝑓  

 𝑥𝑖
𝑛
𝑖=1,𝑖≠𝑗 −(𝑛−1)𝑥𝑗

𝑛
  =  𝑓(𝑥1)  𝑛

𝑗=2                                               (1.1) 

for all 𝑥𝑖 , 𝑥𝑗 ∈ 𝐴0 , where 𝑛  is a fixed positiveinteger with 𝑛 ≥ 2 . Gordji et al. [7] establish thestability of n-Lie 

homomorphisms and Jordan n-Lie homomorphisms on n-Lie algebras associated with the functional equation (1.1) by the 
fixed pointmethod. Kim et al. [12] proved the stabilityand superstability problems of derivations for the functional equation 
(1.1) on Lie C*-algebras bythe direct method. 

Motivated by the above works, we prove the generalized Hyers-Ulamstability problems for proper Lie derivations 
associated with the generalized Jensen type functional equation (1.1) on proper Lie CQ*-algebras. In section 2, we give 
Lie CQ*-derivations in proper Lie CQ*-algebras associated with the functional equation (1.1). In section 3, we give Lie 
JCQ*-derivations in proper Lie Jordan CQ*-algebras associated with the functional equation (1.1). 

Throughout this paper, we assume that (𝐴, 𝐴0) is a proper Lie CQ*-algebras associated with the C*-norm || ⋅ ||0and norm 

|| ⋅ ||. For convenience, we use the following abbreviation for any  given mapping 𝑓 ∶  𝐴0 → 𝐴, 

𝐷𝜇𝑓 𝑥1 , … , 𝑥𝑛 =  𝑓( 
1

𝑛
 𝜇𝑥𝑖)  

𝑛

𝑖=1

− 𝜇 𝑓 
 𝑥𝑖
𝑛
𝑖=1,𝑖≠𝑗 − (𝑛 − 1)𝑥𝑗

𝑛
 − 𝑓(𝜇𝑥1)  

𝑛

𝑗=2

 

for all 𝜇 ∈ 𝑇1 =  𝜆 ∈ ℂ ∶  𝜆 = 1  and all 𝑥1 , … , 𝑥𝑛 ∈ 𝐴0 𝑛 ≥ 2 . 

 

DERIVATIONS IN PROPER LIE CQ*-ALGEBRAS 

In this section, we prove the generalized Hyers-Ulam stability results of proper CQ*-derivations in proper CQ*-triples for 
the functional equation 𝐷𝜇𝑓 𝑥1 , … , 𝑥𝑛 = 0. 

Let (𝐴, 𝐴0) be a proper Lie CQ*-algebra with respect to the Lie product 

[𝑧, 𝑥] =
𝑧𝑥 − 𝑥𝑧

2
 

for all 𝑥 ∈ 𝐴 and all 𝑧 ∈ 𝐴0. A ℂ-linear mapping 𝛿: 𝐴0 → 𝐴 is called a proper Lie CQ-derivation if 

𝛿 [𝑧, 𝑥] =  𝑧, 𝛿 𝑥  +  𝛿 𝑧 , 𝑥  

for all 𝑧, 𝑥 ∈ 𝐴0. In addition, if 𝛿 satisfies the additional condition 

𝛿 𝑎∗ = 𝛿 𝑎 ∗ 

for all 𝑎 ∈ 𝐴0. Then, it is called a proper Lie CQ*-derivation. 

 

Lemma 2.1. [17] Let𝑓 ∶  𝐴0 → 𝐴 is an additive mapping such that 𝑓 𝑥 𝜇 = 𝜇𝑓(𝑥) for all 𝑥 ∈ 𝐴0 and all 𝜇 ∈ 𝑇1 . Then 𝑓 is ℂ-

linear. 

Theorem 2.2. Suppose that𝑓 ∶  𝐴0 → 𝐴 is a mapping with 𝑓 0 = 0 for which there exist mappings 𝜑 ∶  𝐴0
𝑛 → [0,∞), 

𝜓 ∶  𝐴0
2 → [0,∞) and𝜂 ∶  𝐴0 → [0,∞) be mappings such that 

 𝐷𝜇𝑓 𝑥1 , ⋯ , 𝑥𝑛  ≤ 𝜑 𝑥1 , ⋯ , 𝑥𝑛              (2.1) 

 𝑓 [𝑤0 , 𝑤1]  −  𝑓 𝑤0 , 𝑤1 − [𝑤0 , 𝑓 𝑤1 ] ≤ 𝜓 𝑤0, 𝑤1      (2.2) 

 𝑓 𝑤2
∗ − 𝑓 𝑤2 

∗ ≤ 𝜂 𝑤2        (2.3) 

for all 𝜇 ∈ 𝑇1 and all 𝑥1 , … , 𝑥𝑛 , 𝑤0, 𝑤1 , 𝑤2 ∈ 𝐴0  (𝑛 ≥ 2). Let 𝐿 (< 1) be a constant such that 

𝜑  
𝑥1

𝑛
, … ,

𝑥𝑛

𝑛
 ≤

𝐿

𝑛
𝜑 𝑥1 , ⋯ , 𝑥𝑛         (2.4) 

𝜓 
𝑤0

𝑛
,
𝑤1

𝑛
 ≤

𝐿

𝑛2 𝜓 𝑤0, 𝑤1                 (2.5) 

𝜂  
𝑤2

𝑛
 ≤

𝐿

𝑛
𝜂 𝑤2                (2.6) 

for all 𝑥1 , … , 𝑥𝑛 , 𝑤0, 𝑤1 , 𝑤2 ∈ 𝐴0. Then there exists a unique Lie CQ*-derivation 𝛿 ∶  𝐴0 → 𝐴 satisfying 

 𝑓 𝑥 − 𝛿(𝑥) ≤
𝐿

1−𝐿
𝜑(𝑥, 0,… ,0)         (2.7) 

for all 𝑥 ∈ 𝐴0.  
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Proof.  Letting𝜇 = 1and 𝑥1 = 𝑥, 𝑥2 = ⋯ = 𝑥𝑛 = 0 in (2.1), we get  

 𝑛𝑓  
𝑥

𝑛
 − 𝑓(𝑥) ≤ 𝜑(𝑥, 0, … ,0),                             (2.8)    

for all 𝑥 ∈ 𝐴0. Replacing 𝑥 by
𝑥

𝑛 𝑗
and  multiplying𝑛𝑗  both the sides of (2.8),  

 𝑛𝑗+1𝑓  
𝑥

𝑛 𝑗+1
 − 𝑛𝑗𝑓(

𝑥

𝑛 𝑗
) ≤ 𝑛𝑗𝜑(

𝑥

𝑛 𝑗
, 0, … ,0), 

for all 𝑥 ∈ 𝐴0 and all integer 𝑗 ∈ ℤ+ with 𝑗 = 0,1,2,…. Hence, we obtain 

 𝑛𝑚𝑓  
𝑥

𝑛𝑚
 − 𝑛𝑘𝑓(

𝑥

𝑛𝑘
) ≤  𝑛𝑗𝜑  

𝑥

𝑛 𝑗
, 0, … ,0 ≤  𝐿𝑗𝜑(𝑥, 0,… ,0)𝑚−1

𝑗=𝑘
𝑚−1
𝑗=𝑘    (2.9)    

for all 𝑥 ∈ 𝐴0 and all nonnegative integers 𝑚, 𝑘 with 𝑚 ≥ 𝑘. It follows from (2.9) that the sequence {𝑛𝑚𝑓  
𝑥

𝑛𝑚
 }  is Cauchy in 

𝐴 for all 𝑥 ∈ 𝐴0. Since 𝐴 is complete, it converges. So, we can define a mapping 𝛿 ∶  𝐴0 → 𝐴 defined by  

𝛿 𝑥 = lim
𝑚→∞

𝑛𝑚𝑓  
𝑥

𝑛𝑚
  (2.10) 

for all 𝑥 ∈ 𝐴0.  Passing the limit 𝑚 → ∞ with 𝑘 = 0 in (2.9), we have  

 𝑓 𝑥 − 𝛿 𝑥  ≤ lim
𝑚→∞

||𝑛𝑚𝑓  
𝑥

𝑛𝑚
 − 𝑓 𝑥 ||  ≤  𝑛𝑗𝜑  

𝑥

𝑛 𝑗
, 0,… ,0 ≤  𝐿𝑗𝜑(𝑥, 0, … ,0)∞

𝑗=0
∞
𝑗=0 , 

which implies the inequality (2.7) holds for all 𝑥 ∈ 𝐴0. On the other hand, it follows from (2.4), (2.5), (2.6) and 𝐿 < 1 that 

lim
𝑚→∞

𝑛𝑚𝜑  
𝑥1

𝑛𝑚
, … ,

𝑥𝑛
𝑛𝑚

 = 0, lim
𝑚→∞

𝑛2𝑚𝜓 
𝑤0

𝑛𝑚
,
𝑤1

𝑛𝑚
 = 0, lim

𝑚→∞
𝑛𝑚𝜂  

𝑤2

𝑛𝑚
 = 0. 

Substituting𝜇 = 1 and  𝑥1 , … , 𝑥𝑛  by  
𝑥1

𝑛𝑚
, … ,

𝑥𝑛

𝑛𝑚
  in (2.1), we have  

 𝐷1𝛿 𝑥1 ,⋯ , 𝑥𝑛  = lim
𝑚→∞

𝑛𝑚 ||𝐷1𝑓  
𝑥1

𝑛𝑚
, … ,

𝑥𝑛
𝑛𝑚

 || 

≤ lim
𝑚→∞

𝑛𝑚𝜑  
𝑥1

𝑛𝑚
, … ,

𝑥𝑛
𝑛𝑚

 = 0 

for all 𝑥1 , … , 𝑥𝑛 ∈ 𝐴0. Then 𝐷1𝛿 𝑥1 ,⋯ , 𝑥𝑛 = 0, and so the mapping 𝛿 is additive [12]. Letting 𝑥1 = 𝑥, x2 = ⋯ =  𝑥𝑛 = 0 in 

(2.1), we get  𝜇𝑓 𝑥 − 𝑓 𝜇𝑥  ≤ 𝜑(𝑥, 0,… ,0)for all 𝑥 ∈ 𝐴0. Thus,  

 𝜇𝑓 𝑥 − 𝑓 𝜇𝑥  =  lim
𝑚→∞

𝑛𝑚 ||μ𝑓  
𝑥

𝑛𝑚
 − 𝑓  𝜇

𝑥

𝑛𝑚
 || 

≤ lim
𝑚→∞

𝑛𝑚𝜑  
𝑥1

𝑛𝑚
, … ,

𝑥𝑛
𝑛𝑚

 = 0, 

which implies 𝜇𝑓 𝑥 = 𝑓 𝜇𝑥 for all 𝜇 ∈ 𝑇1 and all𝑥 ∈ 𝐴0.  It follows from Lemma 2.1 that the mapping 𝛿 is ℂ-linear. 

Now, it follows from (2.2), (2.5) and (2.10) that 

 𝛿 [𝑤0, 𝑤1]  −  𝛿 𝑤0 , 𝑤1 − [𝑤0, δ 𝑤1 ]  

= lim
𝑚→∞

𝑛2𝑚  𝑓  
[𝑤0, 𝑤1]

𝑛2𝑚  −  𝑓  
𝑤0

𝑛𝑚
 ,
𝑤1

𝑛𝑚
 − [

𝑤0

𝑛𝑚
, 𝑓  

𝑤1

𝑛𝑚
 ]   

 ≤ lim
𝑚→∞

𝑛2𝑚𝜓  
𝑤0

𝑛𝑚
,
𝑤1

𝑛𝑚
 = 0, 

which proves 

𝛿 [𝑤0, 𝑤1]  =  𝛿 𝑤0 , 𝑤1 + [𝑤0, δ 𝑤1 ] 

for all 𝑤0 , 𝑤1 ∈ 𝐴0.And it follows from (2.3), (2.6) and (2.10) that 

 𝛿 𝑤2
∗ − 𝛿 𝑤2 

∗ = lim
𝑚→∞

𝑛𝑚  𝑓  
w2
∗

𝑛𝑚
 − 𝑓  

𝑤2

𝑛𝑚
 
∗

 ≤ lim
𝑚→∞

𝑛𝑚𝜂  
𝑤2

𝑛𝑚
 = 0 

for all 𝑤2 ∈ 𝐴0. Thus, we obtain that the mapping 𝛿 ∶  𝐴0 → 𝐴 satisfies  

𝛿 𝑤2
∗ = 𝛿 𝑤2 

∗ 

for all 𝑤2 ∈ 𝐴0. 

Finally, let 𝛿′ ∶  𝐴0 → 𝐴 be another proper Lie CQ*-derivation on 𝐴0 satisfying (2.7). Then, we have 

 𝛿 𝑥 − 𝛿 ′(𝑥) ≤ lim
𝑚→∞

𝑛𝑚 ||𝑓  
𝑥

𝑛𝑚
 − 𝛿′  

𝑥

𝑛𝑚
 ||  

≤ lim
𝑚→∞

𝑛𝑚𝐿

1 − L
𝜑  

𝑥

𝑛𝑚
, 0,… ,0 = 0 
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for all 𝑥 ∈ 𝐴0.  So, we can conclude that 𝛿 𝑥 = 𝛿 ′(𝑥) for all 𝑥 ∈ 𝐴0. Therefore, the mapping 𝛿 is a unique proper Lie CQ*-

derivation on 𝐴0satisfying (2.7). This completes the proof. 

Corollary 2.3. Let 𝑟 > 1  and 𝜃 be positive real numbers. Suppose that a mapping 𝑓 ∶  𝐴0 → 𝐴 satisfies 

 𝐷1𝑓 𝑥1 , ⋯ , 𝑥𝑛  ≤ 𝜃 ||𝑥1||0
𝑟 +⋯+ ||𝑥𝑛 |0

𝑟  

 𝑓 [𝑤0 , 𝑤1]  −  𝑓 𝑤0 , 𝑤1 − [𝑤0 , 𝑓 𝑤1 ] ≤ 𝜃 ||𝑤0||0
2𝑟 + ||𝑤1|0

2𝑟   (2.11) 

 𝑓 𝑤2
∗ − 𝑓 𝑤2 

∗ ≤ 𝜃||𝑤2||0
𝑟  

for all 𝑥1 , … , 𝑥𝑛 , 𝑤0, 𝑤1 , 𝑤2 ∈ 𝐴0. Then there exists a unique proper Lie CQ*-derivation 𝛿 ∶  𝐴0 → 𝐴 such that  

 𝑓 𝑥 − 𝛿 𝑥  ≤
𝑛𝑟𝜃

𝑛𝑟−𝑛
||𝑥||0

𝑟      (2.12) 

for all 𝑥 ∈ 𝐴0. 

Proof. Letting 𝜑 𝑥1 , ⋯ , 𝑥𝑛 =  𝜃 ||𝑥1||0
𝑟 + ⋯+ ||𝑥𝑛 |0

𝑟 for all 𝑥1 , … , 𝑥𝑛 ∈ 𝐴0 and 𝐿 = 𝑛1−𝑟  , we obtain the claimed stability 

result (2.12). This completes the proof. 

Corollary 2.4. Let 𝑟 , 𝑟𝑗  𝑗 = 1,2, . . , 𝑛  and 𝜃 be positive real numbers such that 0 <  𝑟𝑗
𝑛
𝑗=1 < 1. Suppose that a mapping 

𝑓 ∶  𝐴0 → 𝐴 satisfies 

 𝐷𝜇𝑓 𝑥1 , ⋯ , 𝑥𝑛  ≤ 𝜃 ||𝑥1||0
𝑟1 × ⋯× ||𝑥𝑛 ||0

𝑟𝑛     (2.13) 

 𝑓 [𝑤0, 𝑤1]  −  𝑓 𝑤0 , 𝑤1 − [𝑤0, 𝑓 𝑤1 ] ≤ 𝜃 ||𝑤0||0
𝑟 ⋅ ||𝑤1||0

𝑟  

 𝑓 𝑤2
∗ − 𝑓 𝑤2 

∗ ≤ 𝜃||𝑤2||0
𝑟  

for all 𝑥1 , … , 𝑥𝑛 , 𝑤0, 𝑤1 , 𝑤2 ∈ 𝐴0 and all 𝜇 ∈ 𝑇1. Then 𝑓 is a proper Lie CQ*-derivation on 𝐴0.  

Proof.Letting 𝜑 𝑥1 ,⋯ , 𝑥𝑛 = 𝜃 ||𝑥1||0
𝑟1 × ⋯× ||𝑥𝑛 ||0

𝑟𝑛  , 𝜓 𝑤0, 𝑤1 = 𝜃 ||𝑤0||0
𝑟 ⋅ ||𝑤1||0

𝑟 , 𝜂 𝑤2 =  𝜃||𝑤2||0
𝑟  in Theorem 2.2, 

we have the conditions (2.4), (2.5), (2.6). Putting 𝑥1 = ⋯ = 𝑥𝑛 = 0and 𝜇 = 1 in (2.13), we obtain 𝑓 0 = 0. Furthermore, if 

we put 𝑥1 = 𝑥, 𝑥2 = ⋯ = 𝑥𝑛 = 0 and 𝜇 = 1 in (2.13), then we have 𝑓 𝑥 = 𝑛𝑓  
x

𝑛
  for all 𝑥 ∈ 𝐴0. It is easy to see that by 

induction, we get𝑓 𝑥 = 𝑛𝑚𝑓  
x

𝑛𝑚
 for all 𝑥 ∈ 𝐴0 and all 𝑚 ∈ ℤ+. Now, it follows from Theorem 2.2 that 𝑓 is a proper Lie 

CQ*-derivation on 𝐴0. This completes the proof. 

 

DERIVATIONS IN PROPER LIE JCQ*-ALGEBRAS 

In this section, we give the generalized Hyers-Ulam stability of Lie JCQ*-derivations in proper CQ*- algebras associated 
with the functional equation 𝐷𝜇𝑓 𝑥1 , … , 𝑥𝑛 = 0. 

A proper Lie CQ*-algebra (𝐴, 𝐴0), endowed with Jordan product 

𝑧 ∘ 𝑥 =
𝑧𝑥 + 𝑥𝑧

2
 

for all 𝑥 ∈ 𝐴0and all 𝑧 ∈ 𝐴0 is called a proper Lie JCQ*-algebra. 

Definition 3.1. Let (𝐴, 𝐴0) be a proper Lie JCQ*-algebra. A ℂ-linear mapping 𝛿 ∶  𝐴0 → 𝐴is called a proper Lie JCQ*-

derivation if 𝛿satisfies a proper Lie CQ*-derivation and  

𝛿 𝑥 ∘ 𝑦 = 𝑥 ∘ 𝛿 𝑦 +  𝛿 𝑥 ∘ 𝑦 (3.1) 

for all 𝑥, 𝑦 ∈ 𝐴0. 

Theorem 3.2. Let 𝜑, 𝜓, 𝜂 be as Theorem 2.2. Suppose that a mapping 𝑓 ∶  𝐴0 → 𝐴 with 𝑓 0 = 0 satisfies (2.1), (2.2), 

(2.3) and 

||𝑓 𝑤0 ∘ 𝑤1 − 𝑤0 ∘ 𝑓 𝑤1 − 𝑓 𝑤0 ∘ 𝑤1|| ≤ 𝜓(𝑤0 , 𝑤1)   (3.2) 

for all 𝑤0 , 𝑤1 ∈ 𝐴0. Then there exists a unique proper Lie JCQ*-derivation 𝛿 ∶  𝐴0 → 𝐴 such that 

||𝑓 𝑥 − 𝛿 𝑥 || ≤
𝐿

1−𝐿
𝜑 𝑥, 0,… ,0          (3.3) 

for all 𝑥 ∈ 𝐴0. 

Proof.By the same reasoning as in the proof of Theorem 2.2, there exists a unique ℂ-linear mapping 𝛿satisfying (2.7). The 

mapping 𝛿 ∶  𝐴0 → 𝐴is defined by 

𝛿 𝑥 = lim
𝑚→∞

𝑛𝑚𝑓  
𝑥

𝑛𝑚
  

for all 𝑥 ∈ 𝐴0. It is sufficient to show that 𝑓satisfies the condition (3.1) of Definition 3.1.It follows from (2.5) and (3.2) that 
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 𝛿 𝑤0 ∘ 𝑤1 − 𝛿 𝑤0 ∘ 𝑤1 − 𝑤0 ∘ 𝛿 𝑤1   

                            = lim
𝑚→∞

𝑛2𝑚  𝑓  
𝑤0 ∘ 𝑤1

𝑛2𝑚  − 𝑓  
𝑤0

𝑛𝑚
 ∘

𝑤1

𝑛𝑚
−
𝑤0

𝑛𝑚
∘ 𝑓  

𝑤1

𝑛𝑚
   

≤ lim
𝑚→∞

𝑛2𝑚𝜓  
𝑤0

𝑛𝑚
,
𝑤1

𝑛𝑚
 = 0,                                 

which gives 

𝛿 𝑤0 ∘ 𝑤1  =  𝛿 𝑤0 ∘ 𝑤1  +  𝑤0 ∘ 𝛿 𝑤1  

for all 𝑤0 , 𝑤1 ∈ 𝐴0. Therefore, we conclude the mapping 𝛿is a proper Lie JCQ*-derivation on 𝐴0.This completes the proof.  

Corollary 3.3.Let 𝑟 > 1 , 𝜃and 𝜖 be positive real numbers. Suppose that a mapping 𝑓: 𝐴0 → 𝐴satisfies  

 𝐷1𝑓 𝑥1 , ⋯ , 𝑥𝑛  ≤ 𝜖,   

 𝑓 [𝑤0 , 𝑤1]  −  𝑓 𝑤0 , 𝑤1 − [𝑤0, 𝑓 𝑤1 ] ≤ 𝜃 ||𝑤0||0
2𝑟 + ||𝑤1|0

2𝑟 , 

 𝑓 𝑤2
∗ − 𝑓 𝑤2 

∗ ≤ 𝜃||𝑤2||0
𝑟 , 

||𝑓 𝑤0 ∘ 𝑤1 − 𝑤0 ∘ 𝑓 𝑤1 − 𝑓 𝑤0 ∘ 𝑤1|| ≤ 𝜃 ||𝑤0||0
2𝑟 + ||𝑤1|0

2𝑟  

for all 𝑥1 , … , 𝑥𝑛 , 𝑤0, 𝑤1 , 𝑤2 ∈ 𝐴0.  Then there exists a unique proper Lie JCQ*-derivation 𝛿 ∶  𝐴0 → 𝐴such that 

||𝑓 𝑥 − 𝛿 𝑥 || ≤
𝑛𝜖

𝑛𝑟−𝑛
                        (3.4) 

for all 𝑥 ∈ 𝐴0. 

Corollary 3.4.Let 𝑟𝑖 , 𝑟, 𝜃 be as Corollary 2.4. Suppose that a mapping 𝑓: 𝐴0 → 𝐴 satisfies  

 𝐷𝜇𝑓 𝑥1 , ⋯ , 𝑥𝑛  ≤ 𝜃 ||𝑥1||0
𝑟1 × ⋯× ||𝑥𝑛 ||0

𝑟𝑛  

 𝑓 [𝑤0, 𝑤1]  −  𝑓 𝑤0 , 𝑤1 − [𝑤0, 𝑓 𝑤1 ] ≤ 𝜃 ||𝑤0||0
𝑟 ⋅ ||𝑤1||0

𝑟  

 𝑓 𝑤2
∗ − 𝑓 𝑤2 

∗ ≤ 𝜃||𝑤2||0
𝑟  

||𝑓 𝑤0 ∘ 𝑤1 − 𝑤0 ∘ 𝑓 𝑤1 − 𝑓 𝑤0 ∘ 𝑤1|| ≤ 𝜃 ||𝑤0||0
𝑟 ⋅ ||𝑤1|0

𝑟  

for all 𝑥1 , … , 𝑥𝑛 , 𝑤0, 𝑤1 , 𝑤2 ∈ 𝐴0. Then 𝑓is a proper Lie JCQ*-derivation on 𝐴0. 
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