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Critical analysis of the thermodynamics of reaction kinetics 
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ABSTRACT 

Our objective is to show the weakness of the recent thermodynamics of chemical reactions. We show that such a 
thermodynamic theory of chemical reactions, which could be similar to the generalized Onsager’s theory in 
thermodynamics, is not reality at the moment.  
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INTRODUCTION 

The thermodynamics of the reaction kinetics is presently limited on the theory of ideal gases or their mixtures. 
Consequently it describes the reality to the same degree as the ideal gas describes it. However, complex biological 
phenomena can be described [i], [ii] and some approaches give realistic results despite this general simplification [iii].  

The law of mass action, which is the basis of the chemical reaction kinetics, is not generally valid. It is true that the 
constitutive equation of reaction speed is approximated well by the product of the power of concentrations, but the the 
stoichiometric ratio as the power of the concentration does not surely fit to reality. Additionally the law of mass action is a 
non-linear constitutive equation which does not fit the generalized Onsager’s symmetry relations. This is because 
Onsager’s theory is based on constitutive equations of the exchange of current fluxes and their interactions with 
thermodynamic forces [iv]. However the chemical reactions are based on sources and products of balance equations. 
Because the resulting values satisfy the mass-conservation rules, and therefore include both negative and positive terms, 
this excludes the existence of the dissipative potential. 

THE BASIS OF REACTION KINETICS 

We study a system having multiple chemical components which could interact in stoichiometric chemical reactions. Let the 
number of the reactions be R. The molar number of chemical reactions derived from two sources: the environmental in- 
and ex-fluxes and internal sources, counting the chemical components that are used up and those that are produced. 
Consequently the molar number has a balance equation:  
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 is the molar change from the 
internal sources of the i-th component, called the molar-number production. Because the number of reactions in the 
system is R, the complete molar number is the superposition of the partial numbers:  
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where dt
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 is the molar-number production of the i-th chemical component in the j-th chemical reaction.  

The equations of the stoichiometric reactions are: 
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(3) 

where iA
 is the symbol of the i-th component and ij

 is the stoichiometric coefficient of the i-th chemical component in 

the j-th reaction. By convention, the left to right forward reactions have negative 
 fiij ,...,2,1, 

 coefficients while the 

 nfllj ,...,2,1, 
 coefficients are positive; however in the backward reactions from right to left the signs are 

opposite to those in the forward case.  

According to Equation (3), in every step of the j-th reaction in the case of the forward reaction from 
 fiij ,...,2,1, 

 

molar quantities of component iA
, 

 nfllj ,...,2,1, 
 molar quantities of component lA

 are produced, while in 
the backward reactions the opposite occurs.  

Denoting the number of reaction steps by jd
 during time dt in the j-th reaction, the molar-number production of the i-th 

component iA
 is: 

  
jij

i

ij ddn 
 

(4) 

Hence the balanced molar-number production term of (1) is 
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(5) 

where j  is the j-th reaction coordinate and  dt

d j

 is its reaction speed.  

The mass-conservation principle is of course valid in the chemical reactions too. In our case, this means that the 
consequent mass balance of all the reactions must not have a source, so: 
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(6) 

where iM
 is the molar-mass of the i-th components. 

HOMOGENEOUS SYSTEMS 

Chemistry works with concentrations, so we use these too temporarily.  

When the system has volume V, the molar concentration of the i-th components is V

n
c i

i 
.  Consequently the balance 

equation (1) will have the form  
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(7) 

This equation must be completed by constitutive equations to determine the time-dependence of the reactions.  

THE CONSTITUTIVE EQUATIONS 

The constitutive equation for the concentration flux
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These equations describe the boundary transports so we have to fit the boundary conditions.  

1. In a closed homogeneous system:  
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2. In the case of constant flux concentration (e.g. flow reactors): 
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3. In the case of a material contact reservoir: 
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where 0ik
 is the coefficient of material transfer of the i-th component and 0ic

 is the molar concentration of the i-th 
component in the reservoir.  

Constitutive equations for 

 

dt

cd i

i

 production of concentration 

This law of mass action studies the stoichiometric reactions according to (1). The law of mass action states that the 
forward reaction proceeds at the rate 
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(11) 

while the backward reaction proceeds at the rate 
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(12) 

where kc
 is the molar concentration of the k-th chemical component, and fk

 and bk
 are dimensional constants that 

must be determined empirically. Note that the concentrations fk
 and bk

 can depend not only on the temperature but 

also on the pressure. The general convention is that the ij
 values are positives in (11). Under these conditions, the 

constitutive equations for the concentration production are:  
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(13) 

By understanding these principles in more depth, the reaction speed will be connected to a measurable value. Based on 

(4) we find a connection between the concentration speed 

 

dt

cd ij

i

 (introduced in (7)) and the reaction speed.  

According to (4), the i-th component of the change of speed of the molar-concentration in the j-th reaction is:  
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(14) 

from which the constitutive equations are:  
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(15) 

For example, let us study a homogeneous system with four components 41,..., AA
, where only a single chemical reaction 

happens. Then the reaction equation is: 
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(16) 

This system has four concentration balances, four concentration productions, but only one reaction coordinate and one 
characteristic reaction speed.  

This reaction speed could be expressed with any of the four concentration productions according to (14).  

Let us study the concentration production of chemical component 1A
. In equilibrium we could derive two kinds of speeds. 

One reaction speed is in the direction of the upper arrow (forward) while the other one is in the direction of the lower arrow 
(backward). The mass conservation is valid, so the consequent reaction speed is: 
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Hence the consequent reaction speed is the sum of the forward and backward reactions.  
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It is zero in equilibrium, so: 
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(19) 

where K is the equilibrium constant.  

Examples of the reaction kinetics of homogeneous systems.  

1. Single-component system without reservoir reaction 

In this case, the concentration balance (7) has no production term, only flux, so 
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a) In the case of the constant flux 
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., the solution of (20) is 
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b) When the system has a material transfer contact with a reservoir according to (10), then from (20) we get: 
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Its solution is:  

      ktectcctc  00 0
 

(23) 

Note that the boundary condition has a definite influence on the result.  

2. Production of component A from component X by decay  

In this case the system has a reaction: 
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The reaction speed according to (13) is 
 ckck bXf 

, so the concentration production by (14) is 
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When the system is closed and 
constcX 

, the solution is: 
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When the flux is constant, 

 

const
dt

cd e


, and 

constcX 
, the solution is:   

     

b

Xf

tk

k

ck
c

ectcctc f







1

11 ,0

 

(27) 

 

3. Production of component A from X by autocatalytic reaction 

 In this case the system reacts as follows: 
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The reaction speed according to Equation (13) is 
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, so the concentration production  is  
 

 2ckcck
dt

cd
bXf

i


 by (14). From here the concentration balance is:  
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When the system is closed and 
constcX 

, then:  
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In equilibrium:  
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Then we get: 
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and its solution 
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In a closed system, where 
0cccX 

 is a predetermined constant value, the equilibrium value is: 

X
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f
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. 
Introducing this, we again obtain (32) with other parameters as before: 
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(34) 

Its solution has the form shown in (33).  

4. Population dynamics 

 The reaction kinetics of autocatalytic systems shown above can be connected to the Volterra-Lotka-Glaser population-

dynamics theory [v]. Its basis is that, in the case of a population of N individuals, the kinetic equation 
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generates population growth 
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 with a growth rate r.  This analogy can be made only when the feeding has 
infinite capacity. When the capacity is finite, the growth rate decreases by the growth of the number of the given 

population.  In this case, 
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, where 0N
 is the upper limit of the population size. In this case, the 

population dynamics could be described by 
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which has the identical form to (30).  

Consequently the population dynamics can be modelled well by Equation (28) of the autocatalytic processes. The 
challenge however is that Equation (30) was derived while considering at least two independent constitutional conditions, 
and it is not yet clear how these were fixed here.   

5. A Gray-Scott-model 

We can show the asymmetry in consequence of the mass conservation. The model investigates the following processes in 
a homogeneous system [vi]: 
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Here the first equation describes the situation when the catalyzer B produces component B from A. The second equation 
is the degradation of the catalyzer. The balance of P is undetermined so it has no dynamical description. The reaction 

speed of the decay of the component A is 

2
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(37) 

We found that one of the productions is opposite to the other one.  

a) When the system is in material exchange contact with the reservoir described by (10), then from (20) we get: 
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When the parameters of the material transfer are identical, we get the equations of the Gray-Scott model:  
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which are simply transformed to 
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(40) 

The thermodynamics have not been taken into consideration until this point. Now we give the further development of the 
thermodynamic reaction kinetics.  

THERMODYNAMIC BASIS OF REACTION KINETICS  

The first law of thermodynamics is formulated: 
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where for the i-th components, L

M
dNdm i

ii 
, where iM

 is the molar mass, L is the Loschmidt number, and iN
 is 

the number of molecules. From the balance of molecular numbers described in (2), it follows that:  
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Due to the chemical reactions of L

M
vddm
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i

j 
, the formula of mass conservation is:  
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From which 
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From the equations (41) and (42), the first law of thermodynamics is derived:  
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The Gibbs relation for multicomponent systems is the unification of the first and second principles of thermodynamics. Its 
formulation with the molar numbers is: 
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Introducing the following denotations (affinities),  
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we get the form of the first law of thermodynamics formulated by molecular numbers for chemical reactions: 
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(48) 

where jA
 is the affinity of the j-th chemical reaction. The value 


 is the so-called reaction coordinate.  

The affinity and the form of the irreversible heat in the next formula (49) were precisely formulated by De Donder [vii]:  
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(49) 

In consequence of (49), that the consequent jjdA 
 would not be negative in all of the reactions. When only one 

chemical reaction happens in the system, the affinity A and the character 
d

 of the development of the reaction have the 
same sign and become zero at the same time. When the chemical reaction isobaric and isothermal, then we can introduce 
the Gibbs free enthalpy [viii] as: 
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(50) 

which, in the case of a close system, is: 
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(51) 

The free enthalpy G decreases during the chemical reaction and reaches a minimum in equilibrium. The necessary 
condition of the equilibrium is:  
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(52) 

Dividing (38) by the volume V of the system and using the balance of molar concentration (7), we get: 
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(53) 

The entropy produced by the chemical reactions is derived from (39): 
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(54) 

There is a linear connection between the generalized fluxes (in our case j
) and forces ( T

Aj


) according to Onsager’s 
principles. For example, for only two variables:  
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(55) 

where the matrix of conduction coefficients (sometimes called chemical conduction) is positive definite. However, 
unfortunately this is not true in chemical reaction kinetics. In the case of the constitutive equation (15), considering only 
one chemical reaction, the form is  
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and it can also be proven that it is valid only in the approximation of an ideal gas [ix]. Linearity can be approximated by  
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(57) 
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where we suppose that RTA  and so 
T

A
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A
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1

. Unfortunately even the ideal-gas approximation fails to 

describe the reactions. The non-linear Onsager’s theorem can be constructed by 
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 dissipation potentials, but it also fails due to the differences in the stoichiometric coefficients of 
these forces. The other theory of the reaction kinetics could be based on Eyring’s reaction-rate principle [x], [xi], but it also 
failed [xii].  

CONTINUOUS SYSTEMS – EQUATION OF REACTION DIFFUSION  

Morphogenesis is the embryonal development of the structure of an organism. Its principal result is the explanation of the 
complex structures starting from a single cell. The embryonal development has two additional mechanisms: the movement 
of the cell and the specialization of its function. These mechanisms are influenced by various chemical components 
produced in the cell and liberated afterwards. These chemical products are the morphogens. The morphogens diffuse 
freely from one cell to another through their membranes, and their intracellular concentration affects the development of 
the cell. The first mathematical model of the morphogenesis was made by Turing [xiii]. His model was made with two 
morphogens, a and b. Transport of these is defined by their concentration gradient. However the diffusion is not the only 
mechanism of the variation of morphogen concentration in the cell. The morphogens can chemically react with each other, 
depending on their intracellular concentrations. The time-variation of morphogens can be described by coupled equations 
of reaction-diffusion. Study of the system of equations showed that when the diffusion constants differ between the 
morphogens then the initial perturbation of the morphogen concentration shows a stable periodic pattern.  

In the thermodynamic formulation  
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(58) 

Introducing the affinities, 
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(59) 

 

Let us next calculate the mass balance of the individual components of a static, continuous, multi-phase system. The 
mass of components can be changed for two reasons: 

A mass-current flux exists on the surface of the system. This is only conductive in the static system, which is connected to 
diffusion.  

There are chemical reactions inside the system, which could be the source or sink of the mass of various components.  

In a system which has volume V and a mathematically closed surface we consider the mass kdm
 of the k-th component 

in the volume dV. Then the mass-density of the k-th component is dV

dmk
k 

, so the complete mass of that component 

is 


V

kk dVm 

. 
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When kJ
 is the mass-current density of the k-th component, the mass-current through the surface Ad  will be 

AJk d
 in unit time. Consequently the mass-current through the complete boundary surface will be 

 
A

dAJk

 in 
unit time. The negative sign shows the incoming flow, because the normal vector of the surface is directed outside. It was 

shown above that the molar concentration of the k-th component changes by 


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 in unit-time when the system has 
R number of chemical reactions. Consequently the mass concentration of the k-th component changes by 
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 in unit time. So the production of the k-th component in a system with volume V is 
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. Hence the global mass balance on the k-th component is:  
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(60) 

Applying the Gauss theorem: 
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(61) 

This could be written for any volume V, so the differential mass balance is:  
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Introducing the mass concentration 


k
kc 

, we get 

 

 



R

j

jkjk
k nkM

dt

dc

1

,...,2,1, kJ

 

(63) 

where 





n

k

k

1


 is the mass density of the system.  

NON-EQUILIBRIUM THERMODYNAMICS OF MULTICOMPONENT SYSTEMS  

For the actual form of the entropy balance, we start from the Gibbs relation:  
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Hence the rate of entropy density is 
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(65) 

Additionally we consider the concentration balances form (63), the condition 

vdiv
dt

dv


, and the balance of the 
internal energy: 
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0 q
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(66) 

When the system is incompressible we get 

0 vdiv
dt
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

; then the entropy balance is:  
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(67) 

from which the entropy current density is: 
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and the entropy production is: 
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In the case of an isothermal system, two term remains for investigation, of which the term which describes the chemical 

reactions was discussed above. The term which describes the diffusion is 
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, which shows that the 

thermodynamic currents are proportional to the gradient of the thermodynamic currents kj , while the thermodynamic 

forces are proportional to the gradients of the chemical potentials: 
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. Consequently the Onsager’s constitutive 
equations for the diffusion are:  
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REACTION-DIFFUSION EQUATION 

For simplicity, let us limit the calculation to two components. We now have two mass current densities and two forces: 
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. The system is isothermal, so the chemical potentials depend only on the concentrations. 
Because the chemical reactions were described in the ideal-gas approximation, we apply that here too. Then the chemical 
potentials of the various components depend only on their own concentrations, while cross-effects are neglected, and 

using the form 
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 (70), we get: 
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Using the concentration balances from (63), the reaction-diffusion equation of the concentrations is:  
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(72) 

Substituting into the terms of concentration production, the right-hand of the equation (72) the constitutive equations (15), 
we get the function of the concentrations similar to the equations found by Gray-Scott model. Denoting these 

concentrations as 
   212211 ,and, cccc  

, we get: 
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Due to the incompressibility, (73) can be divided by the densities; hence: 
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(74) 

When the diffusion constants are independent from the concentrations we get the reaction-diffusion equations proposed 
by Turing [xiv]:  
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(75) 

These equations are completed with the boundary conditions (such as the concentrations on the boundaries, 
concentration of the current densities on the boundaries, or a combination of these). These equations are subject to 
intensive mathematical investigations although they are the result of a very high level of simplification and neglect of 
components during their development.  

We have some critical notes at this step: 

1.  In the Gray-Scott model we considered the boundary conditions. Further anticipation of boundary conditions is 
useless.  

2.  The diffusion of morphogens is performed in gel-like media, which are far from the ideal gas.  

3.  Unfortunately the diffusion “constants” are not constants even in the case of an ideal gas.  

4.  The morphogenesis starts from division of a single cell and then the number grows. The volume and the 
boundary of this system change over time. The complete theory neglects this.  

ELEMENTS OF THE MATHEMATICAL STUDY OF THE GRAY-SCOTT EQUATION  

The Gray-Scott equation is formed from the Turing equation (75) combined with the concentration production term from 
equation (40): 
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1. Homogenous equilibrium solution  

When  (76) exists then the solutions satisfy the equations: 
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which have a trivial solution of 
0and1 21  cc

. It is also a simple consequence that  
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(78) 

The   is a bifurcation parameter that drastically changes the character of the solution at the point 
4/1c , 

accompanied by a critical value ck
 connected to F:  
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The 
 fkc  function is a parabola, and the condition 

4/1 c
 involves the relation ckk 

. 

1. Kinetic stability and Andronov-Hopf bifurcation 

We study the stability of the homogeneous time-dependent solution of the Gray-Scott-equation in the vicinity of the 
equilibrium of the linear approximation of the following equation: 
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The Jacobi matrix of the right side of the equation system is: 
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and from the values of the parameters at the equilibrium point we get: 
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Hence the Jacobi matrix is:   
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Its trace-determinant is: 
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so 
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2tr
 and 
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 have the same sign as 
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These values will be the coefficients in the characteristic polynomial. The  21 and cc
 solutions of (78) will have 
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Consequently at 4

1
 krit

 , that is, any solution where   crosses the 
  c  curve, the value of 
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 at the 

solution of  21 ,cc
 changes from negative to positive, and, as we prove in the following, it makes the solution instable.  

The linearized equation from (80) is formed by the 
 yx,

 deviation from the equilibrium point, where x is the deviation of 
the first component and y is deviation of the second component from the equilibrium value:  
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The solution could have the form of: 
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And so we get the linear homogeneous equation:  
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(89) 

where I  is the unit matrix. This has a solution when 

   0 JIDet
 

(90) 

So we have the characteristic polynomial 
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(91) 

and the solution: 
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(92) 

Now it is clearly proven that when the growing   crosses the 
  c curve at 4

1
 c

, the value of 
  2c

 

becomes positive through zero. In this case the real value of   also goes through zero to positive, while the argument of 

the square root is negative, so   has an imaginary part. Consequently the at first constant oscillation of the amplitude of 

  c  curve, and a growing amplitude appears by growing   , and after crossing zero an instability appears. This is the 
Andronov-Hopf bifurcation [xvi].  

2. Kinetic stability considering diffusion 

The diffusion (as Turing also showed) can cause instability [xvii]. For this we study the linearized equation from (76): 
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Supposing the solution is in the form of  
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we get the following homogenous linear algebraic equation:  
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which, becomes:  
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It has a solution when  
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And so we get the characteristic polynomial of the  
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matrix: 
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Introducing 
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(100) 

the polynomial can be simplified as:  

 02  mm 
 

(101) 

where the index m denotes the wave number of the space pattern.  

The transition from the stable 0Re   state to the instable 0Re   state goes through the value 0 . From 
(101) and (102), the point of bifurcation is 
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When the extreme of this four-ordered function is zero, then the critical wave-number cm
 can be determined from the 

following equation: 
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From the equation (101) we get: 
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2,1
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(104) 

The character of the radical can be obtained from the diagram of 
 mm  ,

 from the point of view of stability. The the 

(
0,0  mm and 

) axis and the curve by mm  42 
 determine five domains (see Figure 1): 

1. The domain I is determined by 
0m , 

0Re 1 
, and 

0Re 2 
. These are real radicals, and it is a 

hyperbolic point in an instable state.  

2. The domain II is determined by mmmm  2,0,0 
, The 

0Re 1 
, and 

0Re 2 
 are real 

radicals, is a stable fixed point, and is in a stable state. 

3. In the domain III characterized by mmmm  2,0,0 
. The 

0Re 1 
 and 

0Re 2 
 are 

complex radicals and it is an attractive focus-point (attractor) in a stable state. 

4. In the domain IV, we have mmmm  2,0,0 
. The 

0Re 1 
 and 

0Re 2 
 are complex 

radicals, and it has instable focus in an instable state.  

5. In the domain V the conditions are: mmmm  2,0,0 
. The

0Re 1 
 and 

0Re 2 
 are 

real radicals, and it is a repulsive node in an instable state. 
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Figure 1. The  mm  ,  diagram for the determination of the stability in Turing domains. 

EFFECT OF DIFFUSION ON THE DECOMPOSITION OF HOMOGENEOUS DYNAMIC 
STABILITY 

Turing discovered the phenomenon in which the diffusion can destabilize the dynamic stability of a homogeneous system 
[xiii]. Starting from a stable homogeneous state, the condition of stability is:  
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The trace and the determinant expression are modified in the characteristic polynomial by diffusion. With diffusion, the 
stability conditions are: 
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Because 
  021

2  DDm
, the negativity of the first equation of (106) does not change by diffusion. However in the 

second equation of (106) the left side is 
2m  parabolic, which is open upwards. Under the condition 02 m , the left 

expression is positive (which follows immediately from (105)), and it is positive for large 
2m  too. The decomposition of the 

stability starts when the expression becomes negative. The minimal value of the parabola is determined by the condition  
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Hence we obtain:  
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Consequently the minimum is: 
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This is negative when 

   2

21221 22   cDDcDD
 

(110) 

This is the necessary and sufficient condition of the instability.  

Due to the expression in (105), the square-root in (110) is real, and a weaker condition is also valid:  

 0221  cDD 
 

(111) 

From the first equation of (105) and from (111) the values of 2c
 and   have opposite signs. In our present case 

02 c
, so in consequence 0 . Introducing the diffusion lengths,  
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the necessary and sufficient condition of the instability in (110) could be written as 
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(113) 

This shows that the necessary condition for the instability is that the diffusion length 2l  is longer than the diffusion length 

1l ; that is, 12 ll 
. In consequence, in our discussed case the chemical component 1 tries to stabilize the system (the 

stability grows) while the chemical component 2 acts in the opposite way, trying to block the stability. So 1 is an activator 
and 2 is an inhibitor from the point of view of stability.  

Note that these last results are not relevant in the case of a cancerous cell set, because according to the experiments of 
Lowenstein [xviii] the cancerous cells are not connected but are isolated (autonomic). In this case the diffusion of 
morphogens has no relevance.  

CONCLUSION 

In summary, unfortunately the idea of finding such a thermodynamic theory of chemical reactions which could be similar to 
the generalized Onsager’s theory appears to be hopeless. In consequence neither the free enthalpy nor the dissipative 
potentials could be followed. Hence the offered advantages of these potentials are to construct such non-linear differential 
equations as were worked out by Poincare, Bendixon, Lyapunov, and others.  
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