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ABSTRACT 

In this paper, Homotopy analysis method is applied to the nonlinear coupled differential equations of classical Boussinesq 
system. We have applied Homotopy analysis method (HAM) for the application problems in [1, 2, 3, 4]. We have also 
plotted Domb-Sykes plot for the region of convergence. We have applied Pade for the HAM series to identify the 
singularity and reflect it in the graph. The HAM is a analytical technique which is used to solve non-linear problems to 
generate a convergent series. HAM gives complete freedom to choose the initial approximation of the solution, it is the 
auxiliary parameter h which gives us a convenient way to guarantee the convergence of homotopy series solution. It 
seems that more artificial degrees of freedom implies larger possibility to gain better approximations by HAM. 
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1. Introduction  

Boussinesq type equations can be used to model the nonlinear transformation of surface waves in shallow water due to 
the effects of shoaling, refraction, diffraction and reflection. Different linear dispersion relations can be obtained by 
expressing the equations in different velocity variables. In fluid dynamics, the Boussinesq approximation for water waves 
is an approximation valid for weakly non-linear and fairly long waves. The approximation is named after Joseph 
Boussinesq, who first derived them in response to the observation by John Scott Russell of the wave of translation (also 
known as solitary wave or soliton). The 1872 paper of Boussinesq introduces the equations now known as the Boussinesq 
equations. 

The Boussinesq equation 

   
23 0tt xx xx xxxxu u u u    ,                                                      (1) 

was solved by Cao [4] using the inverse scattering technique and by Hirota [6] using direct method. Krishnan [2, 3] has 
found periodic wave solutions for equation (1). Rajaraman [12] studied coupled nonlinear differential equations of quantum 
field theory which are given by         

3 2

xx d        , 

 
3 2( )xx f d d       ,                           (2) 

where   and   are real scalar fields and , ,d f   are parameters. Sachs [13] has constructed an infinite family of 

rational solutions of the completely integrable variant of the Boussinesq system given by 
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Using the variable 1H    in equations (3), we get 
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                                            (4) 

where u is the velocity and H is the total depth. Cao [4] has obtained more general soliton solutions of equation (4) by 
trigonometric functions transformation method using homogeneous balance method. Differential transform method [1] has 
also been applied and shown that it is a very fast convergent, precise and powerful tool for solving Boussinesq equations. 
Applying the similarity tranformation to equation (4) we get equation (14). 

2. Basic Idea of HAM 

Basic Idea of HAM is to construct a homotopy as follows 

0( ; , , ) (1 ) [ ( ; , , ) ( )] ( ) [ ( ; , , )]H p h H q L p h H u phH N q h H          ,                (5) 

Where 

     
[ ( )] 0,N u  

                                                              (6) 

is given equation. 

where q   [0,1] is an embedding parameter, h an auxiliary parameter, 0 ( )u  is an initial guess of u( ) and H( ) is a 

non zero auxiliary function,choose a linear operator L of order same as that of N. 

When the embedding parameter q = 0 and q = 1 then 

        0( ;0) ( ), ( ;1) ( ),u u             (7) 

respectively. Thus as q increases from 0 to 1, the solution ( ; )q   varies from the initial guess 0 ( )u  to the required 

solution u( ). By writing ( ; )q  in series as follows 

        0
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                    (8) 
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Where 
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Differentiating the equation (5) m times with respect to q, dividing them by m! and finally setting q = 0, we get the following 
m

th
 order deformation equation. 

     1 1[ ( ) ( )] ( ),m m m m mL u u hR u         (10) 

Where 
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      (12) 

The convergence of the series depends upon the auxiliary parameter h. The value of h is obtained by h curve [14]. 

If it is convergent at q = 1 
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3. Numerical Applications 

Problem 1 

Consider the following Boussinesq equation given in Cao [4] 

        
3 2 '2 3 2 0, (0) 3, (0) 0.u u u u u u           (14) 

We consider the Linear operator as 

          

2

2
,L

 

 
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      (15) 

with the property 

       1 2( ) 0.L c c                                                       (16) 

Applying HAM explained in previous section and solving equation (15) we get the initial guess. 

 

              0 3,                      (17) 

The Nonlinear equation is written as 
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Thus, 
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Using equations (17) and (19) in (10) along with the initial condition  
'(0) 3, (0) 0m m    where m = 1, 2, 3……., we 

get      
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and so on. 

The HAM series solution for (14) is given by 

 0 1 2 3 .............u               (20) 

This solution is graphically depicted in graphs and compared with Achala [1]. 

Problem 2 

Consider the following Boussinesq equation given in Krishnan [2, 3] 

          
3 22 3 9 6 , (0) 3, (1) 0.v v v v v v                        (21) 

 

We consider the Linear operator as 

          

2

2
,L

 

 
 
 

                    (22) 

with the property 

      1 2( ) 0.L c c                                            (23) 

Applying HAM explained in previous section and solving equation (22) we get the initial guess 
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The Nonlinear equation is written as 
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Thus, 
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Using equations (24) and (26) in (10) along with the initial condition  (0) 3, (1) 0m m    where m = 1, 2, 3……., we 

get      
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and so on. 
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The HAM series solution for (21) is given by 

         0 1 2 3 .............v                (27) 

This solution is graphically depicted in graphs and compared with Achala [1]. 

4. Results and Discussions    

In figure 1 and 5 we draw u" versus h and the value of h is estimated by observing the horizontal region of this h curve. In 
figure 2 and 6 velocity curve is drawn for h = 0.1 and this curve exactly matches with the one obtained in Achala [1]. We 
have also estimated the radius of convergence of HAM solutions by Domb-Sykes plot presented in figure 3 and 7 along 
with the Radius of convergence. We have applied Pade approximation for the series solution of (20) and (27) by taking the 
degree as (1, 5) with h = 0.1 and is given by,   
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We observe that the graphs of (28) and (29) exhibit singularities for large values of  . It is also observed in (28) that there 

is a singularity at  = 3.75168 presented in figure 4 and in (29) it exhibits a singularity at  = -1.25809 presented in   

figure 8. 

Thus, we conclude that HAM solution is more accurate and can be applied to almost all nonlinear problems arising in real 

world problems. 

5. Graphs 
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Figure 1 : h-curve 
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Figure 2 : Velocity Curve for h = 0.1 for 0 <   < 30 
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Figure 3 : Domb-Sykes plot for h = 0.1 and R = 1/0.02603 
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Figure 4 : We observe that there is a singularity in the range at  = 3:75168. 
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Figure 5 : h-curve 
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Figure 6 : Velocity Curve for h = 0.1 
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Figure 7 : Domb-Sykes plot for h = 0.1 and R = 1/0.17299 
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Figure 8 : We observe that there is a singularity in the range at  = -1.25809 
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