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ABSTRACT 

In this work, we provide a solution to a two-point boundary value problem that involves an inhomogeneous Airy’s 
differential equation with a variable forcing function. The solution is expressed in terms of the recently introduced Nield-
Koznetsov integral function, Ni(x), and another conveniently defined integral function, Ki(x). The resulting expressions 
involving these integral functions are then evaluated using asymptotic and ascending series.  
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1. INTRODUCTION 

Consider the boundary value problem (BVP) composed of solving the inhomogeneous, second order ordinary differential 
equation (ODE) 

.                                                                                                                                                          …(1) 

Subject to the following boundary conditions (BC) 

                                                                                                                                                                     …(2) 

                                                                                                                                                                     …(3) 

where  and  are real constants and ],[ bax . 

Equation (1) is the well-known inhomogeneous Airy’s differential equation. Rooted in Airy’s nineteenth century work in 
optics, Airy’s ODE continues to receive interest due to the reduction of many differential equations in mathematical physics 
to it by an appropriate change of variables (cf. [4,5,8,11,12] and the references therein).  

Solution to the homogeneous part of ODE (1) is given by 

)()( 21 xBcxAcy ii                                                                                                                                                  …(4) 

where  and  are arbitrary constants, and  and  are two linearly independent functions, known as Airy’s 

functions and defined by the following integrals (cf.  [1, 8, 11, 12]): 

                                                                                                                            …(5) 

                                                                         …(6) 

The wronskian of  and  is given by, [1]: 



1
)()()()())(),((  xAxBxBxAxBxAw iiiiii .                                                                                              …(7) 

When f(x) is a constant function of x, the inhomogeneous ODE (1) has a particular solution given by the Scorer functions, 
[10], as given in what follows: 

i) When 


1
)( xf , a particular solution is given by  

                                                                                                                            …(8) 

ii) When 


1
)( xf , a particular solution is given by 

 .                                                                                                                        …(9) 

The functions  and  are known as Scorer’s functions. It can be seen from (8), (9) and (6) that 

                                                                                                                                          …(10) 

For real values of , Airy’s and Scorer’s functions are real-valued functions, [3]. Extensive analysis has been carried out 

by Gil et.al., [3], when the argument is complex. Computations of the Airy and Scorer functions continue to receive 
attention in the literature, and excellent results have been documented (cf. [1, 2, 6, 7, 11, 12] and the references therein].  

Now, when the forcing function is a constant other than 


1
 , or when the forcing function is a variable function of x, we 

need a consistent notation and methodology to find and express the particular solution to ODE (1), and hence the general 
solution and the solutions to boundary value problems. This is the objective of this work in which we express particular 
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solutions to equation (1) in terms of the recently introduced Nield-Koznetsov function )(xN i , [9], and in terms of the 

function )(xK i , [4], revisited in this work. 

2. GENERAL SOLUTION OF BVP 

General solution to ODE (1) is the sum of the complementary function, given by equation (4) as the solution to the 

homogeneous Airy’s ODE, and the particular solution, , which, using variation of parameters, is assumed to be of the 

form 

                                                                                                                                       …(11) 

where the functions  and  are given by the following forms, respectively, with the help of (7): 



x

dttBitfu
0

1 )()(                                                                                                                                                …(12) 

 

x

dttAitfu
0

2 )()( .                                                                                                                                               …(13) 

Equation (11) thus takes the form 









 

xx

p dttfxAidttAitfxBiy
00

Bi(t))()()()()(                                                                                            …(14) 

and the general solution, gy , to ODE (1) is thus written as 

 Bi(t))()()()()()()(
00

21 







 

xx

iig dttfxAidttAitfxBixBcxAcy  .                                                  …(15) 

Equation (15) is valid for both constant forcing function and variable forcing function, as discussed in the following two 
cases. 

2.1. THE CASE OF CONSTANT FORCING FUNCTION 

When the forcing function in ODE (1) is constant, say )(xf , equation (15) takes the form 

 Bi(t))()()()()(
00

21 







 

xx

iig dtxAidttAixBixBcxAcy  .                                                                 …(16) 

Equation (16) can be conveniently written in the following form that implements the newly introduced Nield and Koznetsov 

function, )(xN i , which has been discussed in detail by Hamdan and Kamel [4]: 

)()()( 21 xNxBcxAcy iiig                                                                                                                          …(17) 

where 

 

x

ii

x

iii dttAxBdttBxAxN
00

)()()()()( .                                                                                                           …(18) 

First and second derivatives of )(xNi  are given by 

 
x

ii

x

iii dttAxBdttBxAxN
00

)()()()()( .                                                                                                             …(19) 
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))(),(()()()()()(
00

xBxAwdttAxBdttBxAxN ii

x

ii

x

iii                                                                             …(20) 

with values at x = 0 given by 0)0( )0(  ii NN , 


1
))0(),0(()0( 

iii BAwN . 

Now, using the BC (2) and (3) in (17), we can determine the following values of the arbitrary constants and render the BVP 
completely solved: 

)()()()(

)]()()()([
)0(

)()(

1
aBbAbBaA

bBaNaBbN
N

aBbB

c
iiii

iiii

i

ii













                                                                         …(21a) 

)()()()(

)]()()()([
)0(

)()(

2
bBaAaBbA

bAaNaAbN
N

aAbA

c
iiii

iiii

i

ii













.                                                                        …(21b) 

2.2. THE CASE OF VARIABLE FORCING FUNCTION 

When the forcing function in ODE (1) is a variable function f(x), the general solution is given by equation (15). The 

particular solution given by equation (14) involves the integrals 
x

i dttAtf
0

)()(  and 
x

i dttBtf
0

)()( . Using integration by 

parts, we express these integrals as follows: 

dttfdAdttAxfdttAtf

x t

i

x

i

x

i )()()()()()(
0 000











                                                                                         …(22) 

dttfdBdttBxfdttBtf

x t

i

x

i

x

i )()()()()()(
0 000











    .                                                                                    …(23) 

Substituting (22) and (23) in (14), and using 


1
)0( 

iN , we obtain: 




















































    dttfdAdttAxf
N

xB
dttfdBdttBxf

N

xA
y

x t

i

x

i

i

i

x t

i

x

i

i

i

p )()()()(
)0(

)(
)()()()(

)0(

)(

0 000 00

 .                                                                                                                                                               

                                                                                                                                                                                        …(24) 

Using (18), equation (24) can be written as: 

 )()()(
)0(

)()()(
xNxfxK

N

xKxNxf
y ii

i

ii
p 




                                                                                             …(25) 

where we define the integral function  as: 

dttfdAxBdttfdBxAxK

x t

ii

x t

iii )()()()()()()(
0 00 0





















     .                                                                …(26) 

From (15) and (24), we can express the general solution to (1) as  

 )()()()()( 21 xNxfxKxBcxAcy iiiig   .                                                                                              …(27) 

Relationship between )(xKi and )(xNi  can be obtained by multiplying (23) by )(xAi , and (22) by )(xBi ,  then 

subtracting, to obtain 
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dttfdAxBdttfdBxA

dttAxBdttBxAxfdttAtfxBdttBtfxA

x t

ii

x t
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x x

iiii

x

ii

x

ii

)()()()()()(

)()()()()()()()()()()(

0 00 0

0 000



.                                …(28) 

The right-hand-side of (28) is recognized as )()()( xKxNxf ii  .We can thus express )(xKi as 









 
x

ii

x

iiii dttAtfxBdttBtfxAxNxfxK
00

)()()()()()()()()( .                                                               …(29) 

The first two derivatives of )(xKi  can be obtained from (29) as 









 
x

ii

x

iiiii dttAtfxBdttBtfxAxNxfxNxfxK
00

)()()()()()()()()()()(                                        …(30) 














x

ii

x

ii

iiiiii

dttAtfxBdttBtfxAx

xBxAwxfxNxfxNxfxNxfxK

00

)()()()()()(

))(),(()()()()()(2)()()(

                                                   …(31) 

and the values at x = 0 are 0)0()0()0(  iii KKK . 

Now, upon using the BC (2) and (3) in (27), we can determine the following values of the arbitrary constants and render 
the BVP completely solved: 

)]()()()()[0(

)()]0()()()([)()]0()()()([
1

aBbAbBaAN

bBNaKaNafaBNbKbNbf
c

iiiii

iiiiiiii







                                  …(32) 

)]()()()()[0(

)()]0()()()([)()]0()()()([
2

bBaAaBbAN

bANaKaNafaANbKbNbf
c

iiiii

iiiiiiii







.                                …(33) 

3. EVALUATION AND APPROXIMATION OF )(xN i  AND )(xK i  

Computing solutions (17) and (27), and evaluation of the arbitrary constants associated with the BVP (1) subject to 

conditions (2) and (3), necessitates evaluating )(xN i  and )(xK i on the interval [a,b]. Since these functions are 

expressed in terms of Airy’s functions, we will rely on approximations of Airy’s functions to approximate )(xN i  and 

)(xK i . A number of methods are discussed in the literature to approximate  and , (cf. [1, 2, 12]). In the 

current work, we illustrate the calculations using the asymptotic series approximations. The following asymptotic series 
approximations have been developed for Airy’s functions, their derivatives and integrals, as given in [12], wherein 

2/3

3

2
x  and 

3/2

3

2
t : 


















 ...

)216(!2

)11)(9)(7(5

)216(!1

)5(3
1

2

)exp(
)(

24/1 



x
xAi                                                                                    …(34) 









 ...

)216(!2

)11)(9)(7(5

)216(!1

)5(3
1

)exp(
)(

24/1 



x
xBi                                                                                            …(35) 
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x
xAi                                                                            …(36) 
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 ...
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                                                                                        …(38) 
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)exp(
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dttB
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.                                                                                                 …(39) 

For large x, we can truncate each of the above series after the first term, and develop the following asymptotic 

approximations to )(xNi , )(xN i
 , )(xK i , and )(xK i

 using equations (18), (19), (29) and (30): 

4/13

)exp(
)(

x
xN i




                                                                                                                                                   …(40) 





3

)exp(
)(

4/1x
xNi                                                                                                                                                …(41) 

 




x

i dttf
txx

xfxK
0

4/34/14/1
)(

)exp(

2

)exp(

3

)exp(
)()(












                                                                                   …(42) 
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.                                        …(43) 

In what follows we will evaluate the solution to ODE (1) subject to BC (2) and (3) when the forcing function is given by 

12/17

51

16
)( xxf  , over different intervals [a,b], and compare our calculations with the solution obtained using Maple’s 

dsolve. General solution is given by equation (27) with )(xNi  and )(xKi  approximated by equations (40) and (42), 

respectively. Evaluating (42) for forcing function
12/17

51

16
)( xxf  , we obtain 

6/7

2/3

3/2

4/1

2/3

51

16

3

)
3

2
exp(

1)
3

2
exp(

2

)
3

2
exp(

)( x

x

x
x

x

xKi















 .                                                                  …(44) 

Now, using the above asymptotic series approximations for )(),(),( xNxBxA iii  and )(xKi  when x  is large, 

equation (27) renders the following approximate general solution 

        
4/1

12/176/7

4/14/124/11
3

)exp(

51

16

51

16

3

)exp(
1)exp(

2

)exp()exp(

2

)exp(

x
xx

xx
c

x
cyg






































                                                                         

                                                                                                                                                                                        …(45) 

where 
2/3

3

2
x  and 21 ,cc  are as given by (32) and (33). 

Values of 1c and 2c  are obtained from equations (32) and (33). Values of )(),(),( xNxBxA iii  and )(xKi at the 

boundary points are once again approximated using the above asymptotic series of these functions. We carry out these 

approximations for a number of BC, shown in Table 1, where we have chosen 0  and 1 . When the values of 

Table 1 are used to construct the solutions to the given BVP, and the solution is plotted on the selected intervals of the x-
axis, Figures 1 through 4 are obtained. In these Figures we also compare the solutions with those numerical solutions 
obtained using Maple’s dsolve numerical built-in function (shown in Table 2). As a first approximation in the asymptotic 
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series, Figures 1-4 demonstrate better agreement and closeness in the solutions when the end points of the interval [a,b] 
are close to each other and not too have in values (as can be seen from Figures 1 and 3). Even though the asymptotic 

series approximations are valid for large values of x, and serves Airy’s functions well, it may not serve the )(xK i well, 

and hence one requires further terms in the asymptotic series to better capture the asymptotic behaviour of the solution for 
large values of x. 

 and  Values of and  computed using asymptotic approximation 

 and  ,  

 and  ,  

 and  ,  

 and  ,  

 

Table 1. Values of  and  computed using asymptotic series approximations 

> ode := diff(y(x), x, x) = x*y(x)+(16/51)*x^(17/12): 

Bcs := y(a) = 0, y(b) = 1:  

coef := dsolve(ode): 

solz:=dsolve({ode,Bcs}, numeric): 

inst := dsolve({Bcs,ode}): 

 

Table 2. Maple’s dsolve numerical routine 

 

Fig. 1 Solution over the interval [0,1] 
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Fig. 2 Solution over the interval [0,10] 

 

Fig. 3 Solution over the interval [2,3] 
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Fig. 4 Solution over the interval [99,100] 

4. CONCLUSION 

In this work we provided a methodology to solve Airy’s inhomogeneous ODE with a two-point boundary value problem. 
Solutions have been expressed in terms of the newly introduced Nield and Koznetsov function. When the forcing function 
is a constant function, the general solution to Airy’s inhomogeneous ODE is given by equation (17), and when the forcing 
function is a continuous function of x, defined over the real field, the general solution is given by equation (27). The 

integral functions )(),(),( xNxBxA iii  and )(xKi , used to express the general solution are evaluated, as a first 

approximation, using asymptotic series expansions. 
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