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Abstract

Averaging method of the fractional partial differential equations and a special case of these equations are studied,
without any restrictions on the characteristic forms of the partial differential operators. We use the parabolic transform,

existence and stability results can be obtained.
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1 Introduction

Consider the following fractional partial differential equations:

% — eL(x,t, D)u(z, 1), (1)

u(m,O) = (P($>7 (2)
where
L(z,t,D) = Y ag(xz,t)D’,

lgl<m
where 0 < a <1,¢ >0, D9 = DI*...D", D; = %, j=1,..,n qg=(q,-.,q) is an n-dimensional multi index,
J
lgl = @1+ oo + @n, x = (21, ..., ) € R, R™ is the n—dimensional Euclidean space, 0 < ¢t < T.
Let Cy(R™) be the set of all bounded continuous functions on #". Consider the following Cauchy problem [8]:

Ou(z,t)
ot
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= (D? + ...+ D?)* N+ ly(x, 1), (3)
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u(z,0) = ¢(z) € C(R"), (4)

where C'(R") is the set of all continuous functions on ", N is a sufficiently large positive integer.

The solution of the Cauchy problem (3), (4) is given by

u(z,t) = /n G(z —y,t)p(y)dy,

where dy = dy;...dy,, and the function G is the fundamental solution of the Cauchy problem (3), (4).
For sufficiently large N, we find v € (0,1) and a constant M > 0 such that:

M
max | Diu(e, )] < 5 max p(o)]

for all t > 0, |q] < m.
A parabolic transform of a function W is a function W defined by [8]

W (z,t1, ..., tr,c1t + ) = Gz —y,c1t + o)Wy, t1, ..., t)dy, (5)
%n
where ¢1 >0, ¢ >0,t;,t€[0,T], 7=1,...,r and W(y,t1,...,t,) is a continuous bounded function on R™ x [0,7T7".
By using the equations (1), (2), we get

3

(1) = 90) + 5oy

/0 (t —8)* *L(x,s,D)u(x,s)ds, (6)

where I' is Gamma function.

In section 2, we study the averaging of the linear operator by using the parabolic transform where we generalize some
known results due to Krol [3]. In section 3, we study a special case for the problem (1), (2) when o = 1. Compare
[1,2,4,5,6,7, 8,9, 10, 11, 13].

2 Averaging a linear operator

Consider the following equation [8]:

v(z,t) = @(z, e1t) + ﬁ/o (t—s)> ! Z aq(x, s, c1t)Dio(x, s, co — c18)ds, (7)

lg|<m

where co > 1T, c1,co are positive constants.

Let
i(m,t,clt,D) = Z aqg(z,t,c1t) DY, (8)
lg|<m
and .
__c _ge-lf ~ _
Vix,t) = (o) /0 (t —s)* "L(x,s,c1t, D)o(x, s,co — c15)ds, (9)
we have
v(x,t) = @(x, ert) + V(z,t), (10)
ov(z,t)  0p(z,cit) OV (x,t)
T TR TR (11)
v(z,0) = ¢(,0), (12)

353



Journal of Advances in Mathematics Vol 17 (2019) https://cirworld.com/index.php/jam

By averaging the coefficients a,(z,t), Gq4(x,t, c1t) over ¢, we can average the operator L(z,t, D), L(z,t,c1t, D),
1 /7
ag(x) = —/ aq(x,t)dt, (13)
T Jo

T
aq(T) = T/o aq(z,t, cit)dt, (14)

for all (z,t), € R" producing the averaged operator L(z, D), l:L(:n, D), as an approximating problem for (1), (2) and
(7) we take

W%%g:,t) = eL(z, D)u* (z, 1), (15)
u(z,0) = (), (16)
and t
v (@, 1) = G, ert) + ﬁ/o (t — ) L(z, D)o* (z, 5,2 — c18)ds, (17)
where ] o
L(z,D) T/o lq%ﬂ ag(x,t, c1t)dt D, (18)
let t )
V* (2, 1) = ﬁ/o (t — )% 1L (2, D)o (2,5, ¢2 — c15)ds, (19)
we have
v (2, 8) = G, ert) + VH(x, 8), (20)
B gtx,t) _ Qw(g;clt) s 8V8(:,t)7 o)
v (z,0) = ¢(x,0). (22)
By using the equations (15), (16), we get
wt(x,t) = o(z) + F(ga) /0 t(t — )2 L(z, D)u*(z, s)ds. (23)

Another straightforward analysis shows the existence and uniqueness of the solutions of the problems (1), (2), (7),
(15), (16) and (17) on the time-scale L.

The norm | . ||« is defined by the supremum norm on the spatial domain and on the time-scale 1 and denoted by
It loo= Supecsn|u(@)].

Notice that there exist a dense set E € Cp,(R™).

Theorem 2.1 Let u be the solution of the initial value problems (1), (2) and u* be the solution of the initial value

problems (15), (16) then we have the estimate || u — u* ||c= O(€) on the time-scale 1.

Proof. We introduce o(x,t) by the near-identity transformation:

o(z.t) = v, 8) + £ /0 (L(@,5,c1t, D) — Lz, D))" (z, £)ds, (24)
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and suppose that the derivatives of v*(z,t), i(x, t,c1t, D) and I:/(a:, D) are bounded.
If nT <t < (n+1)T we obtain

(n+1)T B _
[ 9(z,t) —v*(2,t) o = €]l / (L(z,s,c1t, D) = Lz, D))v" (z,t)ds ||o
nT

(n+1)T
el / (S (s, cxt)De
nT

l[g|<m

1 T
ff/ > ag(,t, crt)dtD* (z, t)ds ||

0

lg|<m

1
= Of(e) on the time-scale —.
€

Differentiation of the near-identity transformation (24) and using the equations (21, 24) repeatedly, we have

8ﬁ($,t) - av*($7t) ~ ) _ *
at - 6t +€(L(m7tjclt7D) L(x,D))’U (x’t)
K = *
+€/ (E(x,s,clt,D) — E(IvD))st
0
oV af D &P(g,tqt) t (B (et ext. D) — L, D))o (1)
t . . )
0
= el(wt,eat, D)o’ (a, 1) + 5‘/37(53715) — eL(x, D)v* (x,t)
K = *
+£/ (i(fc,s,clt,D) — L(x7D>)WT(f’t)ds
0
- . ' )
+M —|—8/ (f)(x, s,c1t, D) — L(x’D))Mds
ot 0 5

= eL(x,t,c1t, D)[o(x,t) — 5/0 (L(z,s,cit, D) — E(w, D))v*(z,t)ds]

ﬁv%’” — eL(z, D)v* (,1)
t = *
+€/ (Lia,s,c2t, D) = Lz, D))avaiiex’t)ds
0
: t : N
+M —|—€/ (Zz(x, s,c1t, D) — L(x’D))Mds
ot ; "
= elatat D)ien) + 21— (e D (o

= oV*(x,t)

+€[/O (L(z, s, c1t, D) — L(z, D)) 5 ds

—gi@c,t,clt,p)/o (E(z,5,crt, D) — L(z, D))o* (z, £)ds]

op(x, crt)
R7

op(x, crt)

d
ot >

+5/0 (L(, s, c1t, D) — L(z, D))

with initial value 0(x,0) = ¢(=,0).
Let

o .
i eL(x,t,c1t,D) =L,
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we get

L (6 —v*)=0(¢) on the time-scale <.

Moreover (0 —v*)(z,0) =0, z € R".
To complete the proof we use the barrier functions and the Phragmen-Lindel6f principle see [12].

Suppose that the barrier function:

B(x,t) = e M(,t) ||t
OV*(x,t) OV (x,t)

5 5 +eL(x,t,c1t, D)v(z,t) — eL(z, D)v*(z,1)

+

t _ )
+ e/ (Ii(x,s,clt,D)—L(x’D))w
0 ¢
oV*(z,t) B AV (z,t)
ot ot
+ (ot at, D)o, t) — =L(e, D)o (a1
99(z, crt)
ot

ds || t

1 ~
+ 58 || L(‘T’tacltaD)[

t _

T / (L(z,s,ext, D) — L(z, D)) ds] |loo 2,
0

where

= oV*(x,t)

M(z,t) = /O(E(x,s,clt,D)—L(x,D)) 5 ds

¢ _
fsi(z,t,clt,D)/ (L(z,s,c1t, D) — L(z, D))v*(z, t)ds,
0

and the functions (we omit the arguments)

Z1(z,t) = 0(x,t) — v(z, t) — B(x,t), Za(x,t) = 0(x,t) — v(z,t) + Bz, t).

We obtain

L Zy(z,t) = (& - eL(z,t,cit, D))[o(z,t) — v(z,t) — B(z,t)]

= Wet) VD o[ (gt eyt D)v(x, t) — eL(w, D)v*(x, 1)

+e [{(L(z,5,e1t, D) — L(x, D)) 22&e1t) g

+el[L(E(x, 5, e1t, D) — L(z, D)) 2t g

—eL(x,t,e1t, D) [1(L(z,s,c1t, D) — L(z, D))v* (,t)ds]

—e || M(x,1) Jloo — || 52 = 2570 + eL(x, t, e1t, D)o(x, )
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—Ei(m,D)v*(x,t) + Ef(f(f/(m, s,c1t, D) — i(x, D))st lloo

— || f/(a:,t,clt,D)[av*af’t) — avé,f’t) +eL(x,t,c1t, D)o (z, t)

—Ei(m,D)v*(x,t) + Ef(f(f/(a:, s,c1t, D) — i(x, D))%ds] lloo t

+e2L(x,t,e1t, D) || M(z,t) [|oo t

teL(x,t,ert, D) || 2ot OVl 4 2Ty ¢, e1t, Dyo(z,t)

—El:/(x, D)v*(z,t) + 5fg(l~/(x, s,c1t, D) — z(x, D))%ds oo t

+1e2L(x,t,e1t, D) || Lz, t, eqt, D)2t — VD o o4 ¢, eqt, D)o (a, t)
—eL(x, D)v*(z,t) + & [y (L(z,5,ert, D) — Lz, D)) 22&t) 4] ||, 2

<0

Y

Z1(2,0) =0, x € R" similarly, £ Zs(x,t) >0, Zs(x,0) =0, x € R".
Zi(z,t) and Zs(x,t) are bounded so we apply the Phragmeén-Lindel6f principle, resulting in Zj(x,t) < 0 and
Zs(x,t) > 0. We get

—B(x,t) < 0(x,t) —v(z,t) < B(z,t),

SO we estimate
| 9(z,t) —v(z,t) <] B(,1) |lo= O(e),

on the time-scale % We can use the triangle inequality to obtain

[o(z,t) —v™(@,1) [l < [ 0(2;8) =v7(2,0) [loo + [| 0(2, 1) = v(2,1) [loo

1
= O(e) on the time-scale - (25)

If ¢,aq € Co(R"™), aq € Cp(R" x [0,T)), then v(z,t, =5, 1), v*(z,t, -5, 1) are the solutions of the equations (7), (17)
1

with ¢; = —an and co = .
Let ) L1
t
n at - - 9 — 5t7 9 d 9
Un (2, t) /WG(x Y —E(yt s, )y
1 t 1 1
t) = G-y, —— —)v* —, —)dy.
unlet) = | Gle—y, o= St D D)y
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By using the semi-group property and the equations (7), (17), we find that u,, and u satisfy the following equations

up(z,t) = Z / ) Y agn(z, 8) Dy (2, 8)ds,

Iql<

Uy, (2, 1) =

t —5) Gq.n(x)Duy (x, s)ds,

||<

where ¢y, Gg.n,aq,n are defined as in

t
Un+1(l',t> = L15(‘/1’.7 Clt) + %/ (t - S)a_l Z dq(‘ra 5, Clt)Dqﬁn(I‘, §,C2 — Cls)d87
@) Jo

l[g|<m

t
Vg (2, t) = Pz, ert) + ﬁ/ (t—s)"" Z aq(x) D%, (2, 5,¢0 — c15)ds,
0

lg|<m
where
f)n(xa S,Co — 018) = G(IE —Y,C2 — cls)vn(yv S)dya
§Rn
and
Oy (x, 8,00 —c18) = Gz — y,ca — c18)vp (y, $)dy.
%n

Hence the required result.

Notice that if the coefficients aq’s and @,’s do not depend on x for all |¢| < m, then a4, = aq and aq , = G-

3 A special case

We study a special case for problem (1), (2) when o = 1:

%u(ﬂc t) = eL(x,t, D)u(x,t), (26)
u(z,0) = p(x). (27)
We have .
u(z,t) = ¢(x) + 6/ L(z, s, D)u(z, s)ds, (28)
0
let
v(x,t) = @(x, ert) —|—5/ Z ag(x, s,c1t)DIo(x, s, co — c18)ds, (29)
lal<m
and
(z,t)=¢ Z aq(x,s,c1t)DIo(x, s, co — c15)ds, (30)
/ lal<m
we have
v(z,t) = @z, ert) + Vi(z, t), (31)
Ov(z,t)  Op(x,cit)  OVi(w,t)
a ot ot (32)
U(xv O) = @(Iv 0)3 (33)
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By averaging the coefficients a,(z,t), Gq(x,t, c1t) over t, we can average the operator L(x,t, D), L(z,t, cit, D), for all

(z,t), x € R" producing the averaged operator L(x, D), L(x, D), as an approximating problem for (26), (27) and (29)

we take D
QD — L, Dy (0,0), (34)
u*(x,0) = o(z), (35)
and .
v*(z,t) = ¢z, c1t) + 5/ L(x, D)o*(z, s, co — c15)ds, (36)
0
let .
Wi (x,t) = s/ L(x, D)o*(x, s, co — c15)ds, (37)
0
we get
v*(z,t) = @z, ert) + Vi'(x, 1), (38)
av*(l’,t) _ 3¢(x,clt) am*(zvt)
a ot ot (39)
v*(z,0) = ¢(z,0). (40)
From the equations(34), (35), we have
¢
u(z,t) = p(x) + 5/ L(z, D)u*(z, s)ds, (41)
0

Theorem 3.2 Let u be the solution of the initial value problems (26), (27) and u* be the solution of the initial value
problems (34), (35) then we have the estimate || u — u* ||oo= O(€) on the time-scale L.

Proof. Consider the near-identity transformation:
t ~ =
(z,t) = v, 8) + £ / (E(@,5,c1t, D) — Lz, D))o* (z, £)ds, (42)
0
we obtain
1
|| 0(x,t) —v*(x,t) ||oo= O(e) on the time-scale —.
€

By differentiating of the near-identity transformation (42) and using the equations (39, 42) repeatedly, we get

00(x,t)
ot

OV (, )
ot

+e[/0 (L(z,s,crt, D) — L(z, D))

- sz(ac,D)v*(x,t)

vy (z,t)
ot

= eL(x,t,cit, D)o(x,t) +
ds
~ t ~ =
—5L(x,t,clt,D)/ (L(x,s,c1t, D) — L(x, D))v* (x, t)ds]
0

~ t - ~
+M + E/ (i(:v,s,clt,D) — L(m,D))Mds,
ot 0 ot

with initial value 0(x,0) = ¢(z,0).
We have
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L (6 —v*)=0(e) on the time-scale L.

Moreover (0 —v*)(z,0) =0, x € ™.
We can use the barrier functions and the Phragmen-Lindelof principle see [12].

Let the barrier function:

Bi(z,t) = el Mi(x,t) ||oo t
+ BVla(Zc,t) — avla(f’t) +eL(z,t,e1t, D)v(z,t) — eL(z, D)v* (2, 1)
¢ _ N
+ 5/ (L, s, c1t, D) —I?(x,D))st oo ¢
0
1 - oV (xz,t)  OVi(z,t)
+ 5¢ | L(z,t,c1t, D)[ Y i

eL(z,t,cit, D)v(z,t) — sl:/(x, D)v*(x,t)

t _ ~
+ 5/ (i(az,s,clt,D)—L(x,D))st] oo 2,
0

where

M (z,t) = /(E(x,s,clt,D)—[:,(x’D))Mds

¢
—Ef/(x,t,clt,D)/ (L(z, s, c1t, D) — L(x, D))v* (z, t)ds,
0

and the functions (we omit the arguments)

Zs(z,t) = v(x,t) — v(z,t) — Bi(x,t), Zy(z,t) = 0(x,t) — v(z,t) + Bi(z,t).

We have
L Zz(x,t) <0, Z3(x,0) = 0 similarly, £ Z4(x,t) > 0, Z4(x,0) =0.
Zs3(x,t) and Z4(z,t) are bounded so we apply the Phragmen-Lindelof principle, resulting in Zs(z,t) < 0 and Zy(z,t) >
0. We get
—Bi(x,t) < d(x,t) —v(x,t) < Bi(z,t),

SO we estimate
[ o(z,t) —v(z,t) [« < Bi(z,t) [[oo= O(e),

on the time-scale % We can use the triangle inequality to get
* . 1
| v(z,t) — v*(x,t) ||oo= O(€) on the time-scale —. (43)
€

Similar to section (2), we have the required result.

4 Conclusion

A fractional partial differential equation can be solved without any restrictions on the characteristic forms by using
the parabolic transform and the averaging methods. As a special case Cauchy problem is solved for a fractional partial

differential equation.
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