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Abstract

In this paper, neighbourly irregular fuzzy graphs, neighbourly total irregular fuzzy graphs, highly irregular fuzzy
graphs and highly total irregular fuzzy graphs are introduced. A necessary and sufficient condition under which
neighbourly irregular and highly irregular fuzzy graphs are equivalent is provided. We define d2 degree of a vertex in
fuzzy graphs and total d2 -degree of a vertex in fuzzy graphs and (2, k)-regular fuzzy graphs, totally (2, k)- regular
fuzzy graphs are introduced. (2, k)- regular fuzzy graphs and totally (2, k)-regular fuzzy graphs are compared through
various examples.

Keywords: Fuzzy graph, Irregular fuzzy graph, regular fuzzy graph.

Introduction

In 1975, Rosenfeld considered fuzzy relations on fuzzy sets. He developed the theory of fuzzy graphs. Bang and
Yeh during the same time introduced various connectedness concepts in fuzzy graph. Inexact information is used in
expressing or describing human behaviors and mental process. The information depends upon a person subjectively
and it is difficult to process objectively. Fuzzy information can be analyzed by using a fuzzy graph. Fuzzy graph is an
expression of fuzzy relation and thus the fuzzy graph is frequently expressed in fuzzy matrix. N. R. Santhimaheswari
and C. Sekar in 2016 On strongly edge irregular fuzzy graph. O. T. Manjusha, M. S. Sunitha,in (2016), Connected
domination in fuzzy graphs. K. R. Sandeep Narayan and M. S. Sunitha in 2012, Connectivity in a fuzzy Graph and its
complement. In 1965, Lotfi A. Zadeh introduced the concept of a fuzzy subset of a set as a method for representing
the phenomena of uncertainty in real life situations. Azriel Rosenfeld introduced fuzzy graph in 1975. Alison Northup
introduced semiregular graph also called as (2, k)-regular graph and studied some properties of (2, k)-regular graph.
N. R. Santhi Maheswari and C. Sekar introduced d2 of a vertex in graph and also discussed some properties on d2 of
a vertex in graph and introduced (r, 2, k)-regular graph and also discussed some properties of (r, 2, k)-regular graph.
In this paper, we define d2 degree of a vertex in fuzzy graphs and total d2 -degree of a vertex in fuzzy graphs and
(2, k)-regular fuzzy graphs, totally (2, k)- regular fuzzy graphs are introduced. (2, k)- regular fuzzy graphs and totally
(2, k)-regular fuzzy graphs are compared through various examples.

1 Graph

Definition 1.1 (Crisp graph) A graph G = (V,E) consists of V , a nonempty set of vertices (or nodes) and E, a set
of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect
its endpoints.

ftbpFU3.5674in1.337in0ptExamples of crisp graphs 1Figure(1)

Definition 1.2 The degree of a vertex in an undirected graph is the number of edges incident with it, except that a
loop at a vertex contributes twice to the degree of that vertex. The degree of the vertexv is denoted by deg(v).
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Example 1.1 Figure (2) the degree of the vertex b in the graph H is deg(b) = 6, because b has loop at vertex.

Definition 1.3 The degree dG(v) of a vertex v in G or simply d(v) is the number of edges of G incident with vertex
v.

ftbpFU5.8505in1.8922in0ptThe degree of a vertex in two undirected graphs G and H2Figure(2)

Example 1.2 To find the degrees of the vertices in the graphs G and H displayed in Figure (2).

• In G, deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1, deg(e) = 3,

and deg(g) = 0.

• In H, deg(a) = 4, deg(b) = deg(e) = 6, deg(c) = 1, and deg(d) = 5.

Definition 1.4 A complete graph on n vertices, denoted by Kn, is a simple graph that contains exactly one edge
between each pair of distinct vertices. The graphs Kn, for n = 1, 2, 3, 4, 5, 6, are displayed in Figure (3). A simple
graph for which there is at least one pair of distinct vertex not connected by an edge is called noncomplete.

Example 1.3 Figure (3) examples of Complete Graphs.

ftbpFU5.7735in2.0877in0ptComplete Graphs3Figure(3)

Definition 1.5 Cycles A cycle Cn, n ≥ 3, consists of n vertices v1, v2, ..., vn and edges {v1, v2},{v1, v2}, . . . ,
{vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5, and C6 are displayed in Figure (4).

ftbpFU4.7193in1.4105in0ptCycle of crisp graphs4Figure(4)

Definition 1.6 Let n be a nonnegative integer and G an undirected graph. A path of length n from u to v in G is a
sequence of n edges e1, ..., en of G for which there exists a sequence x0 = u, x1, ... , xn−1, xn = v of vertices such that
ei has, for i = 1, ..., n, the endpoints xi−1 and xi. When the graph is simple, we denote this path by its vertex sequence
x0, x1, ..., xn (because listing these vertices uniquely determines the path). The path is a circuit if it begins and ends
at the same vertex, that is, if u = v, and has length greater than zero. The path or circuit is said to pass through the
vertices x1, x2, ..., xn−1 or traverse the edges e1, e2, ..., en. A path or circuit is simple if it does not contain the same
edge more than once.

ftbpFU2.3947in1.5575in0ptPath of graph5Figure(5)

Definition 1.7 An undirected graph is called connected if there is a path between every pair of distinct vertices of the
graph. An undirected graph that is not connected is called disconnected. We say that we disconnect a graph when we
remove vertices or edges, or both, to produce a disconnected subgraph.

Example 1.4 The graph G1 in Figure (6) is connected, because for every pair of distinct vertices there is a path
between them. However, the graph G2 in Figure (6) is not connected. For instance, there is no path in G2 between
vertices a and d.

ftbpFU3.2015in2.1845in0ptConnected graphs and disconnected3.6Figure(3.6)

Definition 1.8 A subgraph of a graph G = (V,E) is a graph H = (W,F ), where W ⊆ V and F ⊆ E. A subgraph H
of G is a proper subgraph of G if H 6= G.

Example 1.5 Figure (7) examples of subgraphs of the original graph.
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ftbpFU3.4108in1.6302in0ptSubgraphs of the original graph3.7Figure(3.7)

Definition 1.9 The degree of an edge (u, v) in the underlying graph is defined as dG(u, v) = dG(u) + dG(v)− 2.

Example 1.6 In figure (6) the degree of edge (a, b) in graph G, dG(a, b) = dG(a) + dG(b)− 2 = 2 + 2− 2 = 2.

Definition 1.10 A graph G is called regular if every vertex is adjacent only to vertices having the same degree . A
graph G is called irregular, if there is a vertex which is adjacent only to vertices with distinct degrees.

Example 1.7 In figure (6) the graph G1 is irregular graph, because

dG(a) = 2, dG(d) = 3. In figure (7) he original graph is regular fuzzy graph, because every vertex is adjacent only
to vertices having the same degree.

2 Fuzzy graph

Definition 2.1 A Fuzzy graph denoted by G̃ = (V,E) on the graph G = (V,E) is a pair of functions (σ, µ) where
σ : V −→ [0, 1] is a fuzzy subset of a non empty set V and µ : V ×V −→ [0, 1] is a symmetric fuzzy relation on σ such
that for all u and v in V the relation µ(u, v) = µ(uv) ≤ σ(u) ∧ σ(v) is satisfied.

Definition 2.2 A Fuzzy graph G̃ = (σ, µ) is a pair of functions σ : V −→ [0, 1] where V is the set of vertices and µ

: V × V −→ [0, 1], ∀x, y ∈ V . Fuzzy graph H̃ = (σ1, µ1) is called a fuzzy subgraph of G̃ induced by 〈V1〉 and V1 ⊆ V if
define σ1 on V1, σ1 : V1 −→ [0, 1], σ1(x) ≤ σ(x), ∀x ∈ V1 and µ1on the collection E1of two element subsets of V1 by
µ1(x, y) ≤ µ(x, y),∀x, y ∈ V1.ftbpFU4.1226in3.0649in0ptRepresentation of fuzzy graph8Figure(8)

Example 2.1 Let E = {x1, x2, x3, x4, x5}, then a fuzzy graph could be described as

G̃(xi, xj) = {[(x1, x2) , 0.3] , [(x1, x3) , 0.8] , [(x1, x1) , 0.7] , [(x2, x1) , 0.5]

, [(x3, x1) 0.2] , [(x3, x2) , 0.6] , [(x4, x3) , 0.8] , [(x1, x5) , 0.9] ,

[(x3, x5) , 0.2] , [(x5, x2) , 0.1]}. Then the fuzzy subgraph H̃ of G̃ is

H̃(xi, xj) = {[(x1, x2) , 0.1] , [(x1, x3) , 0.4] , [(x1, x1) , 0.3] , [(x3, x1) 0.1] ,

[(x3, x2) , 0.2] , [(x4, x3) , 0.7] , [(x1, x5) , 0.5] , [(x3, x5) , 0.2] , [(x5, x2) , 0.1]}.

Definition 2.3 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). The degree of a vertex u is dG̃(u) =
∑

u6=v∈E
µ(u, v), for

(u, v) ∈ E and µ(u, v) = 0, for (u, v) not in E, this is equivalent to dG̃(u) =
∑

(u,v)∈E
µ(u, v).

Example 2.2 In fuzzy graph G̃ above in figure (8), dG̃(a1) = 1.0 + 0.5 = 1.5, dG̃(a2) = 1.0, dG̃(a3) = 1.0 + 0.5 = 1.5,
dG̃(b1) = 1.0 + 0.5 = 1.5, dG̃(b2) = 1.0 + 0.5 = 1.5, dG̃(b3) = 1.0.

Definition 2.4 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). The total degree of a vertex u is defined as

tdG̃(u) =
∑
µ(u, v) + σ(u) = dG̃(u) + σ(u), (u, v) ∈ E.

Example 2.3 Figure (9) Define G̃ = (σ, µ) by σ(u) = 0.9, σ(v) = 0.8, σ(w) = 0.7, σ(x) = 0.6, and µ(u, v) = 0.2,
µ(u,w) = 0.4, µ(w, x) = 0.4, µ(x, v) = 0.3, then

tdG̃(u) =
∑
u6=v

µ(u, v) +σ(u) = dG̃(u) + σ(u) = 0.7 + 0.9 = 1.6, tdG̃(v) =
∑
u6=v

µ(u, v) +σ(v) = dG̃(v) + σ(v) =

0.5 + 0.8 = 1.3, tdG̃(w) =
∑
w 6=u

µ(u,w) +σ(w) = dG̃(w) + σ(w) = 0.9 + 0.7 = 1.6, tdG̃(x) =
∑
x6=u

µ(u, x) +σ(x) =

dG̃(x) + σ(x) = 0.7 + 0.6 = 0.3.
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Definition 2.5 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). Then G̃ is said to be a irregular fuzzy graph if there
exists a vertex which is adjacent to a vertices with distinct degrees.

Example 2.4 Define G̃ = (σ, µ) by σ(u) = 0.4 , σ(v) = 0.6, σ(w) = 0.4, σ(x) = 0.2, σ(y) = 0.5, and µ(u, v) = 0.2,

µ(v, w) = 0.4, µ(w, x) = 0.3, µ(x, y) = 0.2, µ(u, y) = 0.3, ∃u, v ∈ G̃ such that dG̃(u) = 0.2 + 0.3 = 0.5 and
dG̃(v) = 0.2 + 0.4 = 0.6, such that u, v are adjacent vertices but dG̃(u) 6= dG̃(v).

Definition 2.6 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). Then G̃ is said to be a totally irregular fuzzy graph if
there exists a vertex which is adjacent to a vertices with distinct total degrees.

ftbpFU2.6878in2.3627in0ptTotally irregular fuzzy graph9Figure(9)

Example 2.5 See Figure (9). Define G̃ = (σ, µ) by σ(u) = 0.9, σ(v) = 0.8, σ(w) = 0.7, σ(x) = 0.6, and µ(u, v) = 0.2,
µ(u,w) = 0.4, µ(w, x) = 0.4,

µ(x, v) = 0.3, then

tdG̃(u) =
∑
u6=v

µ(u, v) +σ(u) = dG̃(u) + σ(u) = 0.7 + 0.9 = 1.6,

tdG̃(v) =
∑
u 6=v

µ(u, v) +σ(v) = dG̃(v) + σ(v) = 0.5 + 0.8 = 1.3,

tdG̃(w) =
∑
w 6=u

µ(u,w) +σ(w) = dG̃(w) + σ(w) = 0.9 + 0.7 = 1.6,

tdG̃(x) =
∑
x 6=u

µ(u, v) +σ(x) = dG̃(x) + σ(x) = 0.7 + 0.6 = 1.3.

∃u, v ∈ G̃ such that tdG̃(u) = 1.6, tdG̃(v) = 1.3, and u, v are adjacent vertices,

tdG̃(u) 6= tdG̃(v).

G̃ is a totally irregular fuzzy graph and an irregular fuzzy graph because,

∃u, v ∈ G̃ such that dG̃(u) = 0.7, dG̃(v) = 0.5 and u, v are adjacent vertices,

dG̃(u) 6= dG̃(v).

Definition 2.7 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). Then G̃ is said to be a strongly irregular fuzzy graph
if every pair of vertices have distinct degrees.

Example 2.6 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E) which is a cycle of length five. From Figure (3.10),
dG̃(u) = 0.6, dG̃(v) = 0.3, dG̃(w) = 0.5, dG̃(x) = 0.7, dG̃(y) = 0.9. Every pair of vertices have distinct degrees.

Define G̃ = (σ, µ) by σ(u) = 0.4, σ(v) = 0.3, σ(w) = 0.5, σ(x) = 0.7, and µ(u, v) = 0.3, µ(v, w) = 0.2,
µ(w, x) = 0.3, µ(x, u) = 0.4. dG̃(u) = 0.3 + 0.4 = 0.7, dG̃(v) = 0.3 + 0.2 = 0.5, dG̃(w) = 0.2 + 0.3 = 0.5,

dG̃(x) = 0.3 +0.4 = 0.7, G̃ has two pair {v, w} , {u, x} vertices having the same degree then G̃ is not strongly irregular
fuzzy graph.

Definition 2.8 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). Then G̃ is said to be a highly irregular fuzzy graph if

every vertex in G̃ is adjacent to the vertices having distinct degrees.

Example 2.7 Define G̃ = (σ, µ) by σ(u) = 0.4, σ(v) = 0.3, σ(w) = 0.5, σ(x) = 0.7, and µ(u, v) = 0.3, µ(v, w) = 0.2,
µ(w, x) = 0.3, µ(x, u) = 0.4. dG̃(u) = 0.3 + 0.4 = 0.7, dG̃(v) = 0.3 + 0.2 = 0.5, dG̃(w) = 0.2 + 0.3 = 0.5,

dG̃(x) = 0.3 + 0.4 = 0.7, every vertex in G̃ is adjacent to the vertices having distinct degrees. then G̃ is highly irregular
fuzzy graph.
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Definition 2.9 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). Then G̃ is said to be a neighbourly irregular fuzzy

graph If every two adjacent vertices of a fuzzy graph G̃ have distinct degree.

Example 2.8 Define G̃ = (σ, µ) by σ(u) = 0.8, σ(v) = 0.9, σ(w) = 0.7, σ(x) = 0.6, and µ(u, v) = 0.8, µ(v, w) = 0.4,
µ(w, x) = 0.6, µ(x, u) = 0.6. dG̃(u) = 0.8 + 0.6 = 1.4, dG̃(v) = 0.4 + 0.8 = 1.2, dG̃(w) = 0.4 + 0.6 = 1.0,

dG̃(x) = 0.6 + 0.6 = 1.2. We note that every two adjacent vertices of a fuzzy graph G̃ have distinct degree. Then G̃
neighbourly irregular fuzzy graph.

Remark 2.1 A highly irregular fuzzy graph need not be a neighbourly irregular fuzzy graph.

Example 2.9 Define G̃ = (σ, µ) by σ(u) = 0.7, σ(v) = 0.8, σ(x) = 0.5, σ(y) = 0.9, σ(z) = 0.6, and µ(u, v) = 0.4,
µ(v, x) = 0.4, µ(x, y) = 0.5, µ(u, y) = 0.4, µ(y, z) = 0.6. dG̃(u) = 0.4 + 0.4 = 0.8, dG̃(v) = 0.4 + 0.4 = 0.8,
dG̃(x) = 0.4 + 0.5 = 0.9, dG̃(y) = 0.5 + 0.4 + 0.6 = 1.5, dG̃(z) = 0.6.

To every vertex v ∈ V , the adjacent vertices have distinct degrees.

Hence G̃ is highly irregular. But dG̃(u) = dG̃(v) = 0.8.

So G̃ is not neighbourly irregular.

Remark 2.2 A neighbourly irregular fuzzy graph need not be a highly irregular fuzzy graph.

Example 2.10 Define G̃ = (σ, µ) by σ(u) = 0.6, σ(v) = 0.4, σ(w) = 0.5, σ(y) = 0.5, σ(x) = 0.7, and µ(u, v) = 0.6,
µ(v, w) = 0.3, µ(w, y) = 0.2, µ(u, y) = 0.4, µ(w, x) = 0.5, µ(x, y) = 0.3. dG̃(u) = 0.6 + 0.4 = 1.0, dG̃(v) = 0.6 + 0.3 =
0.9, dG̃(w) = 0.3 + 0.2 = 0.5, dG̃(y) = 0.2 + 0.4 + 0.3 = 0.9, dG̃(x) = 0.5 + 0.3 = 0.8. No two adjacent vertices has the

same degree. So G̃ is a neighbourly irregular fuzzy graph. But to the vertex u, the adjacent vertices v and y has the
same degree (= 0.9) such that dG̃(u) = 1.0, dG̃(v) = 0.9, dG̃(y) = 0.9. So G̃ is not highly irregular fuzzy graph.

Definition 2.10 G̃ = (σ, µ) be a fuzzy graph. The degree of an edge (u, v) is defined as dG̃(u, v) = dG̃(u) + dG̃(v)

−2µ(u, v). The minimum degree of an edge is δE(G̃) = ∧
{
dG̃(u, v) : (u, v) ∈ E

}
. The maximum degree of an edge is

∆E(G̃) = ∨
{
dG̃(u, v) : (u, v) ∈ E

}
.

Example 2.11 In the above example (3.10). Define G̃ = (σ, µ) by σ(u) = 0.6,

σ(v) = 0.4, σ(w) = 0.5, σ(y) = 0.5, σ(x) = 0.7,

and µ(u, v) = 0.6, µ(v, w) = 0.3, µ(w, y) = 0.2,

µ(u, y) = 0.4, µ(w, x) = 0.5, µ(x, y) = 0.3.

dG̃(u) = 0.6 + 0.4 = 1.0, dG̃(v) = 0.6 + 0.3 = 0.9,

dG̃(w) = 0.3 + 0.2 = 0.5, dG̃(y) = 0.2 + 0.4 + 0.3 = 0.9,

dG̃(x) = 0.5 + 0.3 = 0.8. Then

dG̃(u, v) = dG̃(u) + dG̃(v)− 2µ(u, v) = 1.0 + 0.9− 2(0.6) = 0.7,

dG̃(v, w) = dG̃(v) + dG̃(w)− 2µ(v, w) = 0.9 + 0.5− 2(0.3) = 0.8,

dG̃(w, y) = dG̃(w) + dG̃(y)− 2µ(w, y) = 0.5 + 0.6− 2(0.2) = 0.7,

dG̃(u, y) = dG̃(u) + dG̃(y)− 2µ(u, y) = 1.0 + 0.6− 2(0.4) = 0.8,

dG̃(w, x) = dG̃(w) + dG̃(x)− 2µ(w, y) = 0.5 + 0.8− 2(0.5) = 0.3,

dG̃(x, y) = dG̃(x) + dG̃(y)− 2µ(x, y) = 0.8 + 0.6− 2(0.3) = 0.8,

δE(G̃) = ∧
{
dG̃(u, v) : (u, v) ∈ E

}
= min {0.7, 0.8, 0.7, 0.8, 0.3, 0.8} = 0.3,

∆E(G̃) = ∨
{
dG̃(u, v) : (u, v) ∈ E

}
= max {0.7, 0.8, 0.7, 0.8, 0.3, 0.8} = 0.8.
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Definition 2.11 Let G̃ = (σ, µ) be a fuzzy graph. The total degree of an edge (u, v) is defined as tdG̃(u, v) =

dG̃(u) + dG̃(v)− µ(u, v). The minimum total degree of an edge is δtE(G̃) = ∧
{
tdG̃(u, v) : (u, v) ∈ E

}
. The maximum

total degree of an edge is ∆tE(G̃) = ∨
{
tdG̃(u, v) : (u, v) ∈ E

}
.

Example 2.12 Define G̃ = (σ, µ) by σ(u) = 0.6, σ(v) = 0.4, σ(w) = 0.5, σ(y) = 0.5, σ(x) = 0.7, and µ(u, v) = 0.6,
µ(v, w) = 0.3, µ(w, y) = 0.2, µ(u, y) = 0.4, µ(w, x) = 0.5, µ(x, y) = 0.3.

dG̃(u) = 0.6 + 0.4 = 1.0, dG̃(v) = 0.6 + 0.3 = 0.9,

dG̃(w) = 0.3 + 0.2 = 0.5, dG̃(y) = 0.2 + 0.4 + 0.3 = 0.9,

dG̃(x) = 0.5 + 0.3 = 0.8. Then

tdG̃(u, v) = dG̃(u) + dG̃(v)− µ(u, v) = 1.0 + 0.9− 0.6 = 1.3,

tdG̃(v, w) = dG̃(v) + dG̃(w)− µ(v, w) = 0.9 + 0.5− 0.3 = 1.1,

tdG̃(w, y) = dG̃(w) + dG̃(y)− µ(w, y) = 0.5 + 0.6− 0.2 = 0.9,

tdG̃(u, y) = dG̃(u) + dG̃(y)− µ(u, y) = 1.0 + 0.6− 0.4 = 1.2,

tdG̃(w, x) = dG̃(w) + dG̃(x)− µ(w, y) = 0.5 + 0.8− 0.5 = 0.8,

tdG̃(x, y) = dG̃(x) + dG̃(y)− µ(x, y) = 0.8 + 0.6− 0.3 = 1.1,

δtE(G̃) = ∧
{
tdG̃(u, v) : (u, v) ∈ E

}
= min {1.3, 1.1, 0.9, 1.2, 0.8, 1.1} = 0.8,

∆tE(G̃) = ∨
{
tdG̃(u, v) : (u, v) ∈ E

}
= max {1.3, 1.1, 0.9, 1.2, 0.8, 1.1} = 1.3.

3 Connected Fuzzy Graphs

Definition 3.1 (A path of fuzzy graph) In a fuzzy graph G̃ = (V, σ, µ), a path P of length n is a sequence of distinct
nodes u0, u1, ...., un such that µ(ui−1, ui) > 0 ; i = 1, 2, ..., n and the degree of membership of a weakest arc is defined
as its strength. If u0 = un and n > 3 then P is called a cycle and P is called a fuzzy cycle, if it contains more than
one weakest arc. The strength of a cycle is the strength of the weakest arc in it. The strength of connectedness between
two nodes x and y is defined as the maximum of the strengths of all paths between x and y and is denoted by

CONNG̃(x, y) = max {µ(x, u1) ∧ µ(u1, u2) ∧ ..... ∧ µ(un−1, y) | x, u1, ..., un−1, y ∈ V }
, then x, y are connected by path of length n.

Example 3.1 In Figure (9)the fuzzy graph is connected fuzzy graph the path from u to w is (u, v, x, w) of length 3
CONNG̃(u,w) = 0.2 > 0.

Definition 3.2 A fuzzy graph G̃(σ, µ) is connected if for every x, y in V ,

µG̃(x, y) = CONNG̃(x, y) > 0.

Example 3.2 The same in example (4.1) above see figure (9).

Definition 3.3 Let G̃ = (σ, µ) be a connected fuzzy graph on G = (V,E). Then G is said to be a neighbourly edge
irregular fuzzy graph if every pair of adjacent edges having distinct degrees.

Example 3.3 In the same example (3.8). Define G̃ = (σ, µ) by σ(u) = 0.8,

σ(v) = 0.9, σ(w) = 0.7, σ(x) = 0.6, and
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µ(u, v) = 0.8, µ(v, w) = 0.4, µ(w, x) = 0.6, µ(x, u) = 0.6.

Then dG̃(u) = 0.8 + 0.6 = 1.4, dG̃(v) = 0.8 + 0.4 = 1.2,

dG̃(w) = 0.4 + 0.6 = 1.0, dG̃(x) = 0.6 + 0.6 = 1.2,

dG̃(u, v) = dG̃(u) + dG̃(v)− 2µ(u, v) = 1.4 + 1.2− 2(0.8) = 1,

dG̃(v, w) = dG̃(v) + dG̃(w)− 2µ(v, w) = 1.2 + 1.0− 2(0.4) = 1.4,

dG̃(w, x) = dG̃(w) + dG̃(x)− 2µ(w, x) = 1.0 + 1.2− 2(0.6) = 1,

dG̃(x, u) = dG̃(x) + dG̃(u)− 2µ(x, u) = 1.2 + 1.4− 2(0.6) = 1.4 .

Definition 3.4 Let G̃ = (σ, µ) be a connected fuzzy graph on G = (V,E). Then G̃ is said to be a neighbourly edge
totally irregular fuzzy graph if every pair of adjacent edges having distinct total degrees.

Example 3.4 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E) which is a cycle of length five. From Figure (10),
dG̃(u) = 0.6, dG̃(v) = 0.3, dG̃(w) = 0.5, dG̃(x) = 0.7, dG̃(y) = 0.9. Total degrees of the edges are calculated as follows:

tdG̃(u, v) = dG̃(u, v) +µ(u, v) = 0.7 + 0.1 = 0.8,

tdG̃(v, w) = dG̃(v, w) + µ(v, w) = 0.4 + 0.2 = 0.6,

tdG̃(w, x) = dG̃(w, x) +µ(w, x) = 0.6 + 0.3 = 0.9,

tdG̃(x, y) = dG̃(x, y) + µ(x, y) = 0.8 + 0.4 = 1.2,

tdG̃(y, u) = dG̃(y, u) +µ(y, u) = 0.5 + 0.5 = 1.

We note that every pair of adjacent edges having distinct total degrees. Then G̃ is neighbourly edge totally irregular
fuzzy graph.

Definition 3.5 A fuzzy graph G̃ = (σ, µ) is said to be complete if µ(u, v) = σ(u)∧σ(v), for all u, v ∈ V and is denoted
by Kσ.

Example 3.5 Let G̃ be fuzzy graph Define G̃ = (σ, µ) by σ(u) = 0.8,

σ(v) = 0.9, σ(w) = 0.7, σ(x) = 0.6, and

µ(u, v) = 0.8, µ(v, w) = 0.7, µ(w, x) = 0.6, µ(x, v) = 0.6.

Then G̃ = (σ, µ) is complete fuzzy graph.

Because µ(u, v) = σ(u) ∧ σ(v), for all u, v ∈ V .

Definition 3.6 The order p and size q of a fuzzy graph G = (σ, µ) are defined to be p =
∑
x∈V

σ(x), and q =∑
(x,y)∈V×V

µ(x, y).

Example 3.6 Define G̃ = (σ, µ) by σ(u) = 0.8 , σ(v) = 0.9, σ(w) = 0.7, σ(x) = 0.6, and µ(u, v) = 0.8, µ(v, w) = 0.4,

µ(w, x) = 0.6, the order of G̃:

p =
∑
x∈V

σ(x) = σ(u) + σ(v) + σ(w) + σ(x) = 0.8 + 0.9 + 0.7 + 0.6 = 2.5.

The size of G̃:

q =
∑

(x,y)∈V×V

µ(x, y) = µ(u, v) + µ(v, w) + µ(w, x) = 0.8 + 0.4 + 0.6 + 0.6 = 2.4.
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Definition 3.7 Let G̃ = (σ, µ) be a fuzzy graph and S ⊆ V . Then the scalar cardinality of S is defined to be
∑
v∈S

σ(v)

and it is denoted by |S|. Let p denotes the scalar cardinality of V , also called the order of G̃.

Example 3.7 Let G̃ be fuzzy graph Define G̃ = (σ, µ) by σ(u) = 0.8 , σ(v) = 0.9, σ(w) = 0.7, σ(x) = 0.6, and

µ(u, v) = 0.8, µ(v, w) = 0.7, µ(w, x) = 0.6 , µ(x, v) = 0.6. Let S = {u, v, x} ⊆ V , then the scalar cardinality of S is

|S| =
∑
v∈S

σ(v) = 0.8 + 0.9 + 0.6 = 2.3.

Notation 1 A node u is said to be isolated if µ(u, v) = 0 for all v 6= u.

Definition 3.8 Let G̃ = (σ, µ) be a connected fuzzy graph on G = (V,E). Then G̃ is said to be a strongly edge
irregular fuzzy graph if every pair of edges having distinct degrees (or) no two edges have same degree.

Example 3.8 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E) which is a cycle of length five. From Figure (10),
dG̃(u) = 0.6, dG̃(v) = 0.3, dG̃(w) = 0.5, dG̃(x) = 0.7, dG̃(y) = 0.9.

Degrees of the edges are calculated as follows:

dG̃(u, v) = dG̃(u) + dG̃(v)− 2µ(u, v) = 0.6 + 0.3− 2(0.1) = 0.7,

dG̃(v, w) = dG̃(v) + dG̃(w)− 2µ(v, w) = 0.3 + 0.5− 2(0.2) = 0.4,

dG̃(w, x) = dG̃(w) + dG̃(x)− 2µ(w, x) = 0.5 + 0.7− 2(0.3) = 0.6,

dG̃(x, y) = dG̃(x) + dG̃(y)− 2µ(x, y) = 0.7 + 0.9− 2(0.4) = 0.8,

dG̃(y, u) = dG̃(y) + dG̃(u)− 2µ(y, u) = 0.9 + 0.6− 2(0.5) = 0.5.

Definition 3.9 Let G = (σ, µ) be a connected fuzzy graph on G = (V,E). Then G̃ is said to be a strongly edge totally
irregular fuzzy graph if every pair of edges having distinct total degrees (or) no two edges have same total degree.

ftbpFU3.8078in2.6775in0ptStrongly edge irregular fuzzy graph10qFigure(10q)

We noted that every pair of edges having distinct degrees. Hence G̃ is strongly

edge irregular fuzzy graph.

Example 3.9 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E) which is a cycle of length five. From Figure (10),
dG̃(u) = 0.6, dG̃(v) = 0.3, dG̃(w) = 0.5, dG̃(x) = 0.7, dG̃(y) = 0.9. Total degrees of the edges are calculated as follows:

tdG̃(u, v) = dG̃(u, v) +µ(u, v) = 0.7 + 0.1 = 0.8,

tdG̃(v, w) = dG̃(v, w) + µ(v, w) = 0.4 + 0.2 = 0.6,

tdG̃(w, x) = dG̃(w, x) +µ(w, x) = 0.6 + 0.3 = 0.9,

tdG̃(x, y) = dG̃(x, y) + µ(x, y) = 0.8 + 0.4 = 1.2,

tdG̃(y, u) = dG̃(y, u) +µ(y, u) = 0.5 + 0.5 = 1.

It is noted that every pair of edges in G̃ having distinct total degrees. So, G̃ is strongly edge totally irregular fuzzy
graph. Hence G̃ is both strongly edge irregular fuzzy graph and strongly edge totally irregular fuzzy graph.
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Remark 3.1 Graph in Figure (10) is both strongly edge irregular fuzzy graph and strongly edge totally irregular fuzzy
graph.ftbpFU2.898in2.1326in0ptStrongly edge but not strongly edge totally11Figure(11)

Example 3.10 Strongly edge irregular fuzzy graphs need not be strongly edge totally irregular fuzzy graphs.

From Figure (11), dG̃(u) = 0.5, dG̃(v) = 0.7,

dG̃(w) = 0.6. Also, dG̃(u, v) = 0.6, dG̃(v, w) = 0.5,

dG̃(w, u) = 0.7, tdG̃(u, v) = 0.9, tdG̃(v, w) = 0.9, tdG̃(w, u) = 0.9.

We noted that G̃ is strongly edge irregular fuzzy graph, since every pair of edges having distinct degrees. Also, G̃
is not strongly edge totally irregular fuzzy graph, since all the edges having same total degree. Hence strongly edge
irregular fuzzy graph need not be strongly edge totally irregular fuzzy graph.

ftbpFU4.0707in2.0384in0ptStrongly edge totally need not be strongly edge 12Figure(12)

Example 3.11 Strongly edge totally irregular fuzzy graph need not be strongly edge irregular fuzzy graph. Consider
G = (V,E) where V = {u; v;w;x} and E = {(u, v), (v, w), (w, x), (x, u)}. And G̃ = (σ, µ), be fuzzy graph From Figure
(12) dG̃(u) = 1.1, dG̃(v) = 0.8, dG̃(w) = 1.2, dG̃(x) = 1.5. dG̃(u, v) = 1.3, dG̃(v, w) = 1, dG̃(w, x) = 1.3, dG̃(x, u) = 1.

It is noted that dG̃(u, v) = dG̃(w, x) = 1.3. Hence G̃ is not strongly edge irregular fuzzy graph. Also, tdG̃(u, v) = 1.6,
tdG̃(v, w) = 1.5, tdG̃(w, x) = 2, tdG̃(u, v) = 1.8. It is observed that tdG̃(u, v) 6= tdG̃(v, w) 6= tdG̃(w, x) 6= tdG̃(x, u). So,

G̃ is strongly edge totally irregular fuzzy graph. Hence strongly edge totally irregular fuzzy graph need not be strongly
edge irregular fuzzy graph.

Theorem 3.1 Let G̃ = (σ, µ) be a connected fuzzy graph on G = (V,E) and is constant function. If G̃ is strongly

edge irregular fuzzy graph, then G̃ is strongly edge totally irregular fuzzy graph.

Assume that is a constant function, let µ(u, v) = c for all (u, v) ∈ E,

where c is constant. Let (u, v) and (x, y) be any pair of edges in E.

Suppose that G̃ is strongly edge irregular fuzzy graph.

Then dG̃(u, v) 6= dG̃(x, y), where

(u, v) and (x, y) are any pair of edges in E .

=⇒ dG̃(u, v) 6= dG̃(x, y) =⇒ dG̃(u, v) + c 6= dG̃(x, y) + c

=⇒ dG̃(u, v) + µ(u, v) 6= dG̃(x, y) + µ(x, y)

=⇒ tdG̃(u, v) 6= tdG̃(x, y),

where (u, v) and (x, y) are any pair of edges in E.

Hence G is strongly edge total irregular fuzzy graph.

Theorem 3.2 Let G̃ = (σ, µ) be a connected fuzzy graph on G = (V,E) and µ is constant function. If G̃ is strongly

edge totally irregular fuzzy graph, then G̃ is strongly edge irregular fuzzy graph.

Assume that µ is a constant function, let µ(u, v) = c for all (u, v) ∈ E,

where c is constant. Let (u, v) and (x, y) be any pair of edges in E.

Suppose that G̃ is strongly edge totally irregular fuzzy graph.

Then tdG̃(u, v) 6= tdG̃(x, y),

where (u, v) and (x, y) are any pair of edges in E.

=⇒ tdG̃(u, v) 6= tdG̃(x, y)
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=⇒ dG̃(u, v) + µ(u, v) 6= dG̃(x, y) + µ(x, y)

=⇒ dG̃(u, v) +c 6= dG̃(x, y) + c

=⇒ dG̃(u, v) 6= dG̃(x, y).

Where (u, v) and (x, y) are any pair of edges in E.

Hence G̃ is strongly edge irregular fuzzy graph.

Remark 3.2 Let G̃ = (σ, µ) be a connected fuzzy graph on G = (V,E). If G̃ is both strongly edge irregular fuzzy graph
and strongly edge totally irregular fuzzy graph. Then need not be a constant function.

ftbpFU3.8078in2.6775in0ptµ is not constant function13Figure(13)

Example 3.12 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E) which is a cycle of length five. From Figure (13),

dG̃(u) = 0.6, dG̃(v) = 0.3, dG̃(w) = 0.5, dG̃(x) = 0.7, dG̃(y) = 0.9. Also, dG̃(u, v) = 0.7, dG̃(v, w) = 0.4, dG̃(w, x)

= 0.6, dG̃(x, y) = 0.8, dG̃(y, u) = 0.5. It is noted that every pair of edges in G̃ having distinct degrees. Hence

G̃ is strongly edge irregular fuzzy graph. Also, tdG̃(u, v) = 0.8, tdG̃(v, w) = 0.6, tdG̃(w, x) = 0.9, tdG̃(x, y) = 1.2,

tdG̃(y, u) = 1. Note that every pair of edges in G̃ having distinct total degrees. Hence G̃ is both strongly edge irregular
fuzzy graph and strongly edge totally irregular fuzzy graph. But µ is not constant function.

Theorem 3.3 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). If G̃ is strongly edge irregular fuzzy graph, then G̃ is
neighbourly edge irregular fuzzy graph.

Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). Let us assume that G̃ is strongly edge irregular fuzzy graph

then every pair of edges in G̃ have distinct degrees so every pair of adjacent edges have distinct degrees. Hence G̃ is
neighbourly edge irregular fuzzy graph.

Theorem 3.4 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). If G̃ is strongly edge totally irregular fuzzy graph, then

G̃ is neighbourly edge totally irregular fuzzy graph.

Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). Let us assume that G̃ is strongly edge totally irregular fuzzy graph

then every pair of edges in G̃ have distinct total degrees so every pair of adjacent edges have distinct total degrees.
Hence G̃ is neighbourly edge total irregular fuzzy graph.

Remark 3.3 Converse of the above two Theorems need not be true.

ftbpFU5.8297in0.9279in0ptCounter example14Figure(14)

Example 3.13 Consider G̃ = (σ, µ) be a fuzzy graph such that G = (V,E) is a path on four vertices. From Figure
(14),

dG̃(u) = 0.6, dG̃(v) = 1.2, dG̃(w) = 1.2, dG̃(x) = 0.6, dG̃(u, v) = 0.6, dG̃(v, w) = 1.2, dG̃(w, x) = 0.6. Here,

dG̃(u, v) 6= dG̃(v, w) and dG̃(v, w) 6= dG̃(w, x). Hence G̃ is neighbourly edge irregular fuzzy graph. But G̃ is not strongly
edge irregular fuzzy graph, since dG̃(u, v) = dG̃(w, x) = 0.6. Also, tdG̃(u, v) = 1.2, tdG̃(v, w) = 1.8, tdG̃(w, x) = 1.2.

Note that tdG̃(u, v) 6= tdG̃(v, w) and tdG̃(v, w) 6= tdG̃(w, x). Hence G̃ is neighbourly edge totally irregular fuzzy graph.

But G̃ is not strongly edge totally irregular fuzzy graph, since tdG̃(u, v) = tdG̃(w, x) = 1.2.

Theorem 3.5 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E), a star K1,n. If the membership values of no two edges

are the same, then G̃ is strongly edge irregular fuzzy graph and G̃ is totally edge regular fuzzy graph.
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Let v1, v2, v3, ...., vn be the vertices adjacent to the vertex x.

Let e1, e2, e3, ......, en be the edges of a star G̃ in that order having

membership values c1, c2, c3, ......, cn such that c1 6= c2 6= c3, ......, 6= cn . Then

dG̃(ei) = dG̃(x) + dG̃(vi)− 2ci = (c1 + c2 + c3 + ......+ cn) +ci − 2ci, (1 ≤ i ≤ n).

dG̃(ei) = (c1 + c2 + c3 + ......+ cn)− ci , (1 ≤ i ≤ n).

All edges ei , (1 ≤ i ≤ n) having distinct degrees.

Hence G̃ is strongly edge irregular fuzzy graph.

Also, tdG̃(ei) = dG̃(x) + dG̃(vi)− ci
= (c1 + c2 + c3 + ......+ cn) + ci − ci , 1 ≤ i ≤ n, and

tdG̃(ei) = (c1 + c2 + c3 + ......+ cn), 1 ≤ i ≤ n.

All edges ei, 1 ≤ i ≤ n, having same total degree.

Hence G̃ is totally edge regular fuzzy graph.

Remark 3.4 A complete fuzzy graph need not be neighbourly irregular.

Example 3.14 Define G̃ = (σ, µ) by σ(u) = 0.5, σ(v) = 0.4, σ(x) = 0.7,

σ(w) = 0.5 and µ(u, v) = 0.4, µ(v, x) = 0.4, µ(x,w) = 0.5,

µ(w, u) = 0.5, µ(u, x) = 0.5, µ(v, w) = 0.4,

dG̃(u) = 0.5 + 0.4 + 0.5 + 0.5 = 1.9, dG̃(v) = 0.4 + 0.4 + 0.4 + 0.4 = 1.6, dG̃(x) = 0.7 + 0.4 + 0.5 + 0.5 = 2.1,
dG̃(w) = 0.5 + 0.4 + 0.5 + 0.5 = 1.9.

G̃ is a complete fuzzy graph but not neighbourly irregular.

4 Regular Fuzzy Graphs

Definition 4.1 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). If dG̃(v) = k for all v ∈ V , i.e. if each vertex has the

same degree k, then G̃ is said to be a regular fuzzy graph of degree k or a k-regular fuzzy graph.

Example 4.1 Let G = (V,E) where V = {u, v, w, x} and E = {(u, v), (v, w), (w, x), (x, u)}, In Figure (14), dG̃(u) =

0.5, dG̃(v) = 0.5, dG̃(w) = 0.5, dG̃(x) = 0.5. Each vertex has the same degree 0.5. Hence G̃ is a regular fuzzy graphs
of degree 0.5.

ftbpFU3.4523in1.6924in0ptA regular fuzzy graph of degree 0.515Figure(15)

Definition 4.2 The total degree of a vertex u is defined as tdG̃(u) =
∑
µ(uv) + σ(u) = dG̃(u) + σ(u), (u, v) ∈ E. If

each vertex of G̃ has the same total degree k, then G̃ is said to be the totally regular fuzzy graph of total degree k, or
a k-totally regular fuzzy graph.

ftbpFU2.8236in1.8083in0ptRegular fuzzy graph and totally regular fuzzy graph.16Figure(16)

Example 4.2 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E), an even cycle of length six. It is noted that in Figure

(16), dG̃(u) = 0.6, dG̃(v) = 0.6, dG̃(w) = 0.6, dG̃(x) = 0.6, dG̃(y) = 0.6, dG̃(z) = 0.6 ⇒ G̃ is a (0.6)-regular fuzzy
graph. Also, note that tdG̃(u) = 1.0, tdG̃(v) = 1.0, tdG̃(w) = 1.0, tdG̃(x) = 1.0, tdG̃(y) = 1.0, tdG̃(x) = 1.0.
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4.1 dm-degree of a vertex in Fuzzy Graps

Definition 4.3 Let G̃ = (σ, µ) be a fuzzy graph. The dm-degree of a vertex u in

G̃ is dm(u) =
∑
µm(u, v),where

µm(u, v) = sup{µ(u, , u1) ∧ µ(u1, u2) ∧ ..., µ(um−1, v) : (u, u1, u2, ..., um−1, v ) is

the shortest path connecting u and v of length m}.
Also, µ(u, v) = 0, for (u, v) not in E.

The minimum dm-degree of G̃ is δm(G̃) = ∧{dm(v) : v ∈ V }.

The maximum dm-degree of G̃ is ∆m(G̃) = ∨{dm(v) : v ∈ V }.

Definition 4.4 Let G̃ = (σ, µ) be a fuzzy graph.

The d2-degree of a vertex u in G̃ is d2(u) =
∑
µ2(u, v), where

µ2(u, v) = sup{µ(u, u1) ∧ µ(u1, v) : (u, u1, v) is the shortest path

connecting u and v of length 2}. Also, µ(u, v) = 0, for (u, v) not in E.

The minimum d2-degree of G̃ is δ2(G) = ∧{d2(v) : v ∈ V }.

The maximum d2-degree of G̃ is ∆2(G̃) = ∨{d2(v) : v ∈ V }.

Example 4.3 Consider G = (V,E) where V = {u, v, w, x, y} and

E = {(u, v), (v, w), (w, x), (x, y), (y, u)}. Define G̃ = (σ, µ)

by σ(u) = 0.2, σ(v) = 0.6, σ(w) = 0.5, σ(x) = 0.4, σ(y) = 0.3

and µ(u, v) = 0.1, µ(v, w) = 0.3, µ(w, x) = 0.3, µ(x, y) = 0.2, µ(y, u) = 0.2.ftbpFU3.4523in2.4993in0ptMinimum

d2-degree of G̃ and maximum17Figure(17)

In Figure (17), d2(u) = {0.1 ∧ 0.3}+ {0.2 ∧ 0.2} = 0.1 + 0.2 = 0.3.

d2(v) = {0.1 ∧ 0.2}+ {0.3 ∧ 0.3} = 0.1 + 0.3 = 0.4.

d2(w) = {0.3 ∧ 0.2}+ {0.3 ∧ 0.1} = 0.2 + 0.1 = 0.3.

d2(x) = {0.2 ∧ 0.2}+ {0.3 ∧ 0.3} = 0.2 + 0.3 = 0.5.

d2(y) = {0.1 ∧ 0.2}+ {0.2 ∧ 0.3} = 0.1 + 0.2 = 0.3.

The minimum d2-degree of G̃ is

δ2(G) = ∧{d2(v) : v ∈ V } = min {0.3, 0.4, 0.3, 0.5, 0.3}

The maximum d2-degree of G̃ is

∆2(G̃) = ∨{d2(v) : v ∈ V } = max {0.3, 0.4, 0.3, 0.5, 0.3}

Definition 4.5 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). If dm(v) = k for all v ∈ V , then G̃ is said to be
(m, k)-regular fuzzy graph.

Definition 4.6 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). If d2(v) = k for

all v ∈ V , then G is said to be (2, k)-regular fuzzy graph.

Example 4.4 Consider G = (V,E) where V = {u, v, w, x, y} and E = {(u, v), (v, w), (w, x)}.
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Define G̃ = (σ, µ) by σ(u) = 0.2, σ(v) = 0.3, σ(w) = 0.4, σ(x) = 0.5, and

µ(u, v) = 0.2, µ(v, w) = 0.2, µ(w, x) = 0.2.

In Figure (18), d2(u) = 0.2, d2(v) = 0.2, d2(w) = 0.2, d2(x) = 0.2.

This graph is (2, 0.2)- regular fuzzy graph.

ftbpFU2.1638in1.913in0pt(2, 0.2)- regular fuzzy graph18Figure(18)

4.2 Total dm-degree of a vertex in Fuzzy Graph

Definition 4.7 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E). The total dm-degree of a vertex u ∈ V is defined as
tdm(u) =

∑
µm(u, v) + σ(u) = dm(u) + σ(u).

The minimum tdm-degree of G̃ istδm(G̃) = ∧{tdm(v) : v ∈ V }.

The maximum tdm-degree of G̃ is t∆m(G̃) = ∨{tdm(v) : v ∈ V }.
Now, total d2-degree of a vertex in fuzzy graph is defined.

Definition 4.8 Let G̃ = (σ, µ) be a fuzzy graph on G = (V,E).

The total d2-degree of a vertex u ∈ V is defined as

td2(u) =
∑
µ2(u, v) + σ(u) = d2(u) + σ(u).

The minimum td2-degree of G̃ is tδ2(G) = ∧{td2(v) : v ∈ V }.

The maximum td2-degree of G̃ is t∆2(G) = ∨{td2(v) : v ∈ V }.

Example 4.5 Consider G = (V,E) where V = {u, v, w, x}

and E = {(u, v), (v, w), (w, x), (x, u)}. Define G̃ = (σ, µ)

by σ(u) = 0.2, σ(v) = 0.3, σ(w) = 0.4, σ(x) = 0.5.

and µ(u, v) = 0.1, µ(v, w) = 0.3, µ(w, x) = 0.4, µ(x, u) = 0.2.

In Figure (3.18), d2(u) = Sup{0.1 ∧ 0.3, 0.2 ∧ .4} = Sup{0.1, 0.2} = 0.2,

d2(v) = Sup{0.1 ∧ 0.2, 0.3 ∧ 0.4} = Sup{0.1, 0.3} = 0.3,

d2(w) = Sup{0.4 ∧ 0.2, 0.3 ∧ 0.1} = Sup{0.2, 0.1} = 0.2,

d2(x) = Sup{0.2 ∧ 0.1, 0.4 ∧ 0.3} = Sup{0.1, 0.3} = 0.3.

td2(u) = 0.2 + 0.2 = 0.4, td2(v) = 0.3 + 0.3 = 0.6,

td2(w) = 0.2 + 0.4 = 0.6, td2(x) = 0.3 + 0.5 = 0.8.

Definition 4.9 (Totally (m, k)-Regular Fuzzy Graph ) If each vertex of G̃ has the same total dm- degree k, then G̃ is
said to be totally (m, k)-regular fuzzy graph.

Definition 4.10 If each vertex of G̃ has the same total d2- degree k, then G̃ is

said to be totally (2, k)-regular fuzzy graph.ftbpFU3.4731in2.5201in0ptA totally (2, k)-regular fuzzy graph need not
be a (2, k)-regular fuzzy graph19Figure(19)

Example 4.6 1- A totally (2, k)-regular fuzzy graph need not be a (2, k)-regular fuzzy graph. Consider G = (V,E)
where V = {u, v, w, x, y} and E = {(u, v), (v, w), (w, x), (x, y), (y, u)}.
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Note that in Figure (19),

d2(u) = 0.6, d2(v) = 0.4, d2(w) = 0.5, d2(x) = 0.6, d2(y) = 0.5 and

td2(u) = 1, td2(v) = 1, td2(w) = 1, td2(x) = 1, td2(y) = 1.

Each vertex has same total d2 -degree 1.

Hence G̃ is totally (2, 1)-regular fuzzy graph.

But G̃ is not (2, k)-regular fuzzy graph.

2- A (2, k)-regular fuzzy graph need not be a totally (2, k)-regular fuzzy graph.

Consider G = (V,E) where V = {u, v, w, x} and E = {(u, v), (v, w), (w, x), (x, u)}.
In Figure (20), d2(u) = 0.2, d2(v) = 0.2, d2(w) = 0.2, d2(x) = 0.2

and td2(u) = 0.5, td2(v) = 0.9, td2(w) = 0.7, td2(x) = 0.6.

Each vertex has the same d2-degree (0.2).

So, G̃ is (2, 0.2)-regular fuzzy graph.

But G̃ is not a totally (2, k)-regular fuzzy graph.

ftbpFU3.5993in1.5463in0ptA (2, k)-regular fuzzy graph need not be a totally (2, k)-regular fuzzy graph20Figure(20)

3- A (2, k)-regular fuzzy graph which is totally (2, k)-regular fuzzy graph.

Consider G = (V,E) where V = {u, v, w, x, y, z} and

E = {(u, v), (v, w), (w, x), (x, y), (y, z), (z, u)}.
In figure (21), d2(u) = 0.6, d2(v) = 0.6, d2(w) = 0.6, d2(x) = 0.6,

d2(y) = 0.6, d2(z) = 0.6 and td2(u) = 1, td2(v) = 1, td2(w) = 1,

td2(x) = 1, td2(y) = 1, td2(z) = 1.

Each vertex has the same d2-degree (0.6).

So, G̃ is a (2, 0.6)-regular fuzzy graph.

Each vertex has the same total d2-degree 1.

Hence G̃ is a totally (2, 1)-regular fuzzy graph.

ftbpFU3.1808in1.9233in0ptA (2, k)-regular fuzzy graph which is totally (2, k)-regular fuzzy graph21Figure(21)

Theorem 4.1 Let G = (σ, µ) be fuzzy graph on G = (V,E). Then σ is constant function iff the following conditions
are equivalent.

(i) G̃ is (2, k)- regular fuzzy graph.

(ii) G̃ is totally (2, k)- regular fuzzy graph.

Suppose that σ is a constant function. Let σ(u) = c, constant for all

u ∈ V .

Assume that G̃ is (2, k)-regular fuzzy graph . Then d2(u) = k, for all u ∈ V
So td2(u) = d2(u) + σ(u), for all u ∈ V ⇒ td2(u) = k + c, for all u ∈ V .

Hence G̃ is totally (2, k + c) -regular fuzzy graph. Thus (1)⇒ (2) is proved.

Now suppose G̃ is totally (2, k)- regular fuzzy graph

⇒ td2(u) = k , for all u ∈ V .

⇒ d2(u) + σ(u) = k, for all u ∈ V .

⇒ d2(u) + c = k, for all u ∈ V .
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⇒ d2(u) = k − c for all u ∈ V .

Hence G̃ is (2, k − c) - regular fuzzy graph.

Hence (i)&(ii) are equivalent.

Conversely assume that (i) and (ii) are equivalent.

Suppose σ is not a constant function. Then σ(u) 6= σ(w) ,

for at least one pair u,w ∈ V .

Let G̃ be a (2, k)-regular fuzzy graph. Then d2(u) = d2(w) = k. So

td2(u) = d2(u) + σ(u) = k + σ(u) and td2(w) = d2(w) + σ(w) = k + σ(w).

Since σ(u) 6= σ(w) ⇒ k + σ(u) 6= k + σ(w) ⇒ td2(u) 6= td2(w).

So G̃ is not totally (2, k) - regular fuzzy graph which is a contradiction to

our assumption.

Let G̃ be a totally (2, k)-regular fuzzy graph. Then td2(u) = td2(w)

⇒ d2(u) + σ(u) = d2(w) + σ(w)

⇒ d2(u)− d2(w) = σ(w)− σ(u) 6= 0

⇒ d2(u) 6= d2(w). So G̃ is not (2, k) - regular fuzzy graph which is a contradiction to our assumption. Hence σ is
a constant function.
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