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Abstract.  

In this paper, the relationship between matrix operation, linear equations, linear representation of vector groups 

and linear correlation is discussed, and the idea of division and combination in linear algebra is discussed to 

help learners understand the connections between various knowledge points of linear algebra from multiple 

angles, deep levels, and high dimensions. 
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1. Introduction 

From the definition of the matrix it seems to be impossible to see its relationship with the linear system of 

equations and the linear representation and linear correlation of vectors. It is not difficult to find out that they 

are inextricably linked with each other. The operation of the matrix, especially the multiplication operation, 

changes the representation of the linear equations. The introduction of the rank of the matrix expounds the 

classification of the solutions of the linear equations. Using the rank of the coefficient Matrix, it is easy to 

determine the solution of the linear equations.  

Although the definition of the linear correlation of vector groups is a basic method for determining the linear 

correlation of vector groups, it is sometimes inconvenient. Constructing an appropriate homogeneous linear 

system of equations can determine the linear correlation of the vector system by whether there is a solution to 

the linear system of equations [1]. At the same time, the solution of the homogeneous linear system of equations 

can be determined based on the rank of the coefficient matrix. Therefore, we only need to use the vector group 

as a column matrix to determine the linear correlation of the vector group by finding its rank.  

2. The idea of division and union 

2.1 Linear equations and matrix multiplication 

1. Linear equations 
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Applying matrix multiplication,(1) can be expressed as 
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The matrix 
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 is divided into rows from the first line to the last line, note as

( ) ( )11 1 1, , , , .n m mna a a aL L L  

(2) get together, get 
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This is the matrix representation of the system of linear equations [1]. 

2. Matrix multiplication   

AB C=                                                        (4) 

where ( ) ( ) ( ), , .ij ij ijm n n s m s
A a B b C c

  
= = =  

  The matrix B is grouped by column, 

( )1, , .SB  = L  

And the matrix C is grouped by column, 

( )1, , .SC  = L  

(4) Separate and become  
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There are s linear equations inside. 

Obviously, from(2) to(3) is integration, from(4) to(5) is split. 

Since the linear equations can be represented in matrix form, the matrix relations m n n s m sA B C  = , from the 

point of view of points, consider i  -column of B  as a solution to the system of linear equations

m n iA X C = ,where iC is column i  of C .Especially when 0m sC  = ,it can be associated with homogeneous 

linear equations. The sufficient necessary conditions for a solution to a linear system of equations are available: 

the sufficient necessary condition for a solution of matrix equations m n n s m sA X C  =  is ( ) ( ),R A R A C= . The 

matrix and linear equations can sometimes be further linked to eigenvalues and eigenvectors. 

2.2 Linear representation and matrix multiplication of vector groups 

1. Column vector group 1, n L  can be linearly represented by column vector group 1, m L , that there is 

a set of numbers
1 ,j mjk kL ,we have 

1 1 , 1, , .j j mj mk k j n  = + + =L L  

Matrix multiplication can be expressed as 
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With the idea of integration, we have 
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Expressed as matrix multiplication, it is 

B AK= , 
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 , the matrix K  is a matrix of coefficients 

represented by this linear representation [1]. 

2. Line vector groups 
1 ,T T

n L can be linearly represented by line vector groups
1 ,T T

m L , that there is 

a set of numbers
1,j jmk kL , we have 

1 1 , 1, , .T T T

j j jm mk k j n  = + + =L L  

Matrix multiplication can be expressed as 
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With the idea of integration, we have 
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Expressed as matrix multiplication, it is 

B KA= , 

where ( ) ( )
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  the matrix K  is a matrix of coefficients 

represented by this linear representation. 

From the right side of equation (6), it can be seen that the linearity of the column vector is shown, and its 

combination coefficient is written in the matrix on the right; From the right side of the equation (8), the linear 

representation of the row vector is written in the matrix on the left. Therefore, it can be summarized as: "Linear 

table, combination coefficient, row left column right." 

The (7) and (9) formulas obtained by (6) and (8) aggregation respectively have the same conclusion. 

The matrix form of the linear table of the row vector group and column vector group has a combination 

coefficient of left and right. From the point of view of splitting, from the above analysis, if there is a relationship 
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between matrices: m n m s s nT U V  = , then the column vector group of the matrixT can be shown linearly by the 

column vector group of the matrix U ; The row vector group of matrix T can be shown linearly by the row 

vector group of matrix V [2]. In short, the idea of aggregation and the relationship of vector groups can be 

expressed by Matrix and its operations. 

3. Application Examples 

Example 1 Assume that 0m n n sA B  = , ( ) ( ) .R A R B n+  can be proved [2]. 

Analysis: with the idea of integration, the matrix relations are associated with homogeneous linear equations, 

and then the theory of equations can be used. 

Proof  Divide B into columns as, ( )1, , sB  = L ,and 0m n n sA B  = ，we have 

( ) ( ) ( )1 1, , , , 0, ,0s sAB A A A   = = =L L L , 

Namely, 

0, 1, , .iA i s = = L  

Namely, the column vectors of B are solutions to homogeneous linear equations 0AX = . 

Set S as the solution set of homogeneous linear equations 0AX = , then 

( ) ( ) ( )1, , sR R S n R A   = −L , 

Namely,   

( ) ( ) .R A R B n+   

Example 2 Third order matrix A  and three-dimensional column vector   , making 
2, ,A A    linear 

independent, and
3 25 3A A A  = − ,if ( )2, ,P A A  = ,find the third-order matrix so that

1A PBP−= . 

Analysis: Transform
1A PBP−=  into AP PB=  , use the idea of splitting, transform the relationship between 

matrices into the relationship between vector groups, and then use the idea of integration to express it as a 

whole. Therefore, it is reduced to the form of a matrix. That is, the required column B  is the combined 

coefficient when the column AP uses the linear table of the column vector P  [3]. 
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  Proof  For ( )2, ,P A A  = ，we have 
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Since
 

2, ,A A   is linear independent, so P is reversible, and 
1A PBP−= . Then B is what is required. 

Example 3 Set a linear system of equations

11 1 1 1

1 1

m m

m mm m m

a x a x b

a x a x b
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(*), If for any 1, , mb bL ,(*) is solved, then 

the determinant of the coefficient ( )det 0ija   of (*) [4]. 

Analysis: The equations are represented in matrix form, and special ones are taken arbitrarily [5]. 

Proof  From what is known, for ( ) ( )1 1,0, ,0 , , 0, 0,1
T T

m = =L L L ,(*) has solutions, 

set the solution is 

, 1, ,i i m = L . 

So 

               , 1, ,i iA i m = = L , 

where ( )ij n
A a=  so 

          ( ) ( )1 1, , , ,m m mA E   = =L L . 
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Where mE is unit matrix, so ( ) ( ) ( ) ( )det det det det 1AB A B E= = = . So we have ( )det 0ija  . 

Example 4 Assume that m s s m mA B E  = , where m s ,so column vector group of m sA  is linearly related. 

Analysis: By linking the vector groups by Matrix blocks, we can see that m sA  and row vector groups of mE are 

equivalent [6]. 

Proof For m s s m mA B E  = , column vector groups of unit matrices mE ,namely the m -dimensional single row 

vector group can be linearly represented by the column vector group of m sA  , Obviously, the column vector 

group of m sA    can be linearly represented by a m  -dimensional single row vector group, so they are 

equivalent, rank is m , so ( )R A m= ，and m s ，we have the column vector of m sA   is a linear correlation 

vector group. 

4. Summary 

Using the dialectical idea of division and combination, the linear representation and linear correlation of matrix 

and linear equations and vector groups can be converted to each other, so that the knowledge that can be used 

can be more abundant; Using the dialectical idea of division and combination, the problems to be solved are 

shown from the microscopic or macroscopic level, so that we can observe it from the microscopic or macroscopic 

level and think about it, which broadens our thinking about solving the problem; By using the dialectical thought 

of division and combination, we can activate the breadth and depth of our mathematical thinking and improve 

the quality of mathematical thinking [7]. 
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