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Abstract
We present a study on numerical solutions of nonlinear ordinary differential equations by applying Runge-Kutta-

Fehlberg (RKF) method, a well-known adaptive Runge-kutta method. The adaptive Runge-kutta methods use embedded
integration formulas which appear in pairs. Typically adaptive methods monitor the truncation error at each integration
step and automatically adjust the stepsize to keep the error within prescribed limit. Numerical solutions to different
nonlinear initial value problems (IVPs) attained by RKF method are compared with corresponding classical Runge-Kutta
(RK4) approximations in order to investigate the computational superiority of the former. The resulting gain in the
efficiency is compatible with theoretical prediction. Moreover, with the aid of a suitable time-stepping scheme, we
show that the RKF method invariably requires less number of steps to arrive at the right endpoint of the finite interval
where the IVP is being considered.

Keywords: Embedded Runge-Kutta methods, Duffing oscillator, Adaptive time-stepping schemes.

Introduction

The Runge-Kutta methods are an important family of predictor-corrector methods for approximation of solutions of
ordinary differential equations (ODEs) which were developed by German mathematicians duo C. Runge (1856–1927)
and M. W. Kutta (1867–1944). Let’s consider an initial value problem (IVP)

u′(t) = f(t,u(t)) where u(t) = (u1(t),u2(t), . . . ,un(t))T, f ∈ [a,b]×Rn→ Rn (1)
with initial condition u(0) = u0.

To numerically approximate the continuously differentiable solution u(t) of the IVP over the time interval
t ∈ [a,b], we subdivide the interval into N equal subintervals and select the mesh points t j = a+ jh, j = 0,1, . . . ,N and
h = (b−a)/N, where h is called a step size.

The family of explicit Runge-Kutta (RK) methods of the m-th stage is given by

u(tn+1) = un+1 = un +
m

∑
i=1

ciki,

where k1 = f (tn,un),

k2 = f
(
tn +α2hun +hβ21k1(tn,un)

)
,

k3 = f
(
tn +α3h,un +h

(
β31k1(tn,un)+β32k2(tn,un)

))
and, in general, km = f

(
tn +αmh+un +h

m−1

∑
i=1

βm jk j

)
.

To employ a specific method, the number of stages (m, in integer), the coefficients αi (for i = 2,3, . . . ,m), βi j (for
1 ≤ j < i ≤ m) and ci (for i = 1,2, . . . ,m) are required to be provided which are usually arranged in a tabular form,
known as Butcher tableau (named after J. C. Butcher).

The RK4 method (with 4th-order convergence rate) represents one of the solutions corresponding to the stage
m = 4. In fact, for m≤ 4, the convergency order p = m. But, beyond that the amount of stages m grows faster than p.
So, after some point (due to so-called Butcher Barrier), it becomes unreasonable to increase the convergency order
p in order to increase the level of accuracy [2]. Which is why, the alternative stepsize adjustment algorithm based
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on the embedded Runge-Kutta formulas has turned out to be so effective in improving the accuracy. This method is
developed by Fehlberg and is called the Runge-Kutta-Fehlberg methods (RKF) [5]. In this context, we must note that
there exists another straightforward technique suitable for adaptive stepsize control in fourth-order Runge-Kutta which
is known as the method of step-doubling (also referred as the Local Error method [10]). This method involves solving
the problem twice using step sizes h and h/2 and comparing answers at the grid points corresponding to the larger
step size. But it requires substantial amount of computation for smaller step size. Furthermore, computation must be
repeated if agreement does not attain the desired level. The main difference between the RKF scheme and step-doubling
scheme lies in use of the function in estimating the error. In step-doubling technique, the error estimation does not
involve the evaluation of the function, while in RKF function must be advanced by using same evaluation points in
order to estimate the error. This computational feature of step-doubling technique is considered to be advantageous, but
in practice, algorithms based on embedded Runge-Kutta formulas are found to be more efficient performer. For more
detail, we refer the reader to [9] for a comparative study between these two aforementioned techniques.

In the present study, we start reviewing the embedded Runge-Kutta formulas and run the numerical simulations by
using algorithms based on RKF method on the test as well as real-world problems. Comparison will be made in the
testing problems to demonstrate the enhanced computational efficiency of RKF method over the RK4 method. The
main objective of this study is the practical demonstration of the adaptive stepsize control phenomenon of RKF method.
In order to achieve this, we evaluate the grid points during the progress of the computations determined by prescribed
adaptive step-size control strategy in a tabular form. In the same table, we also present the RK4 solutions with uniform
distribution of the discretization grid points (uniform stepsize) over a finite interval. For a real-world problem, we have
selected well-known Duffing equation, which is a nonlinear second-order differential equation discovered by German
electrical engineer Georg Duffing. This equation which models Duffing oscillator with damping has been attracting
remarkable research interest over the past few decades due to its applicability to numerous engineering fields, such as
magneto-elastic mechanical system [6], large amplitude oscillation of centrifugal governor systems, nonlinear vibration
of beam and plates and fluid flow induced vibrations [1]. We have also used another version of Duffing equation as one
of the test examples which does not involve the damping term - which allows it to admit an exact solution. Typically,
adaptive methods are not suitable for numerically solving eq. (1) if f(t,u(t)) contains discontinuity. The simulation
may get stuck in an infinite loop while finding the appropriate value for the stepsize, which results in discrepancy
occurring in estimated error. But, it should not be a concern for the problems in the current study, since all sought
solutions are smooth and continuous in nature.

Description of the Method

The adaptive stepsize control algorithm proceeds in the following manner: at each step, two different approximations
for the solution are found – one by using a fourth-order method with five stages and another with a fifth-order method
with six stages.

The general form of a fifth-order Runge-Kutta formula is

k1 = h f (tn,un)

k2 = h f (tn +a2h,un +b21k1)

· · ·
k6 = h f (tn +a6h,un +b61k1 + · · ·+b65k5)

yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6)

The embedded fourth-order formula is

y∗n+1 = yn +d1k1 +d2k2 +d3k3 +d4k4 +d5k5 +d6k6 +O(h5)

and the error estimate is

∆ = yn+1− y∗n+1 =
6

∑
i=6

(ci−di)ki

It must be noted that particular values of the various coefficients in the above equations are not unique. The table (1)
gives the coefficients found by Cash and Karp [3]. Their values are preferred over the original values given by Fehlberg
since it yields more efficient method with better error estimates.

Next, at each step, two attained approximations are compared. Absolute difference between these approximations
gives the local interpolation or per-step error, ε . Error control is achieved by adjusting the increment h so that per-step
error is approximately equal to a prescribed tolerance εtol. What follows is if the two answers are in close agreement,
the approximation is accepted. If the two answers do not agree to a prescribed accuracy, the stepsize is reduced. If
the two answers agree to more significant digits than required, the stepsize in increased. For example, if for current
stepsize h1, the produced error is ε , the corresponding optimal stepsize h2 is estimated as h2 = δh1(εtol/ε)0.2 where δ
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i ai bi j ci di

0 − − − − − − 37
378

2825
27648

1 1
5

1
5 − − − − 0 0

2 3
10

3
40

9
40 − − − 250

621
18575
48384

3 3
5

3
10 − 9

10
6
5 − − 125

594
13525
55296

4 1 − 11
54

5
2 − 70

27
35
27 − 0 277

14336

5 7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table 1: Cash-Karp Parameters for Embedded Runge-Kutta Method

is a safety factor (≈ 1). If ε > εtol, the stepsize has to be decreased, and ε < εtol, the stepsize needs to be increased in
the next step. For coding purpose we have used the following scheme [7]:

hnext =


δh
(εtol

ε

)0.2
, ε ≥ εtol,

δh
(εtol

ε

)0.25
, ε < εtol,

where the value of δ is taken as 0.9.

Numerical Results and Discussion

In this section, we report a few numerical results concerning the numerical solutions of four test problems (example 1 –
example 4) as well as one real-world problem (example 5) where nonlinear ODEs of different degrees are considered.
Each higher order ODE is converted to a system of first-order ODEs. For each example, the numerical results are
presented by depicting two numerical solution profiles (by RK4 and RKF) along with the profile of corresponding
exact solution on the same window. The comparative error estimate for two numerical solutions are also presented.
Additionally, we have presented the progression of both numerical solutions along the grid points to demonstrate the
adaptive nature of the step-size control for RKF method for each problem. In almost every case, numerical result
confirms that the number of steps required for RKF method to keep the error within the prescribed level is substantially
less than that of RK4 method.

Example 1

First, we study the first order nonlinear ODE with constant coefficients which models the hybrid selection phenomenon
as follows

du
d t

= ku(1−u)(2−u), u(0) = 0.5, (2)

where k is a positive constant that depends on the genetic characteristic. In this hybrid model, u(t) is the portion of
population of a certain characteristic, and t is the time measured in generations. This equation admits the exact solution
u(t) = 1−1/

√
1+3e2kt which satisfies the given initial condition u(0) = 0.5.

Example 2

Let’s consider the following nonlinear initial value problem (IVP)

d2u
dt2 =

(
du
dt

)2

−1, with u(0) = 0, u′(0) =
e2−1
e2 +1

. (3)

The exact solution of this initial value problem is u(t) = t− ln(e2t + e2)+ ln(1+ e2).

By letting

u=

[
u0 u1

]T

=

[
u u′

]T
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Figure 1: Left: The behavior of the exact and numerical solutions of eq. (2). Right: Absolute errors
(
|ua −

uRK4| and |ua−uRKF|
)

between numerical solutions and the exact solution. Maximum absolute error 1.71298E−08
(by RKF method) and 5.32023E−06 (by RK4 method).

Stepsize used 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

u(t) × E01
RK4 Method

5.0000 6.6960 7.9223 8.7223 9.2210 9.5266 9.7126 9.8257 9.8942 9.9359 9.9611

Stepsize used 0.0 0.5 2.470 4.465 6.491 8.886 10.000

u(t) × E01
RKF Method

5.0000 5.8991 8.3440 9.3816 9.7751 9.9320 9.9611

Table 2: Comparison for numbers of steps between RK4 and RKF methods required to approximate u(t) at the rightmost
boundary value t = 1 of the chosen interval [0,10] for IVP (2). Per-step error tolerance of 10E−04 is used.

the equivalent first-order equations become

u′ =

[
u′0 u′1

]T

=

[
u1

(
u2

1−1
)]T

.

Also, the initial conditions are

u(0) =
[

u0(0) u1(0)

]T

=

[
0 (e2−1)/(e2 +1)

]T
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Figure 2: Left: The behavior of the exact and numerical solutions of eq. (3). Right: Absolute errors
(
|ua −

uRK4| and |ua−uRKF|
)

between numerical solutions and the exact solution. Maximum absolute error 2.86821E−07
(by RKF method) and 1.65371E−06 (by RK4 method).
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Stepsize used 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

u(t) × E01
RK4 Method

0.00 0.7395 1.4302 2.0651 2.6365 3.1367 3.5583 3.8944 4.1391 4.2879 4.3378

Stepsize used 0.0 0.1 0.6960 1.00

u(t) × E01
RKF Method

0.00 0.7395 3.8826 4.3379

Table 3: Comparison for numbers of steps between RK4 and RKF methods required to approximate u(t) at the rightmost
boundary value t = 1 of the chosen interval [0,1] for IVP (3). Per-step error tolerance of 10E−04 is used.

Example 3

Consider Duffing equation which is a second order nonlinear ODE

d2u
dt2 +3u−2u3 = cos(t)sin(2t), with u(0) = 0, u′(0) = 1. (4)

Similarly, by letting

u=

[
u0 u1

]T

=

[
u u′

]T

the equivalent first-order equations become

u′ =

[
u′0 u′1

]T

=

[
u1

(
2u3

0−3u0 + cos(t)sin(2t)
)]T

,

and, the initial conditions are

u(0) =
[

u0(0) u1(0)

]T

=

[
0 1

]T

The exact solution of the IVP (4) is u(x, t) = sin(t).
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Figure 3: Left: The behavior of the exact and numerical solutions of eq. (4). Right: Absolute errors
(
|ua −

uRK4| and |ua−uRKF|
)

between numerical solutions and the exact solution. Maximum absolute error 3.20104E−08
(by RKF method) and 3.49696E−06 (by RK4 method).

Example 4

Let’s consider the following fourth-order nonlinear IVP

d4 u
d t4 −16u−24u5 = 40tan(t), with u(0) = 0, u′(0) = 1, u′′(0) = 1, u′′′(0) = 2. (5)

Again, by assuming similarly, by letting

u=

[
u0 u1 u2 u3

]T

=

[
u u′ u′′ u′′′

]T
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Stepsize used 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

u(t)×E01
RK4 Method

0.00 1.9867 3.8942 5.6464 7.1736 8.4147 9.3204 9.8545 9.9957 9.7385 9.0930

Stepsize used 0.00 0.1000 0.6251 1.1551 1.7163 2.0000

u(t)×E01
RKF Method

0.00 0.9983 5.8517 9.1489 9.8952 9.0944

Table 4: Comparison for numbers of steps between RK4 and RKF methods required to approximate u(t) at the rightmost
boundary value t = 2 of the chosen interval [0,2] for IVP (4). Per-step error tolerance of 10E−04 is used.

the equivalent first-order equations become

u′ =

[
u′0 u′1 u′2 u′3

]T

=

[
u1 u2 u3

(
24u5

0 +16u0 +40tan3(t)
)]T

,

and, the initial conditions are

u(0) =
[

u0(0) u1(0) u2(0) u3(0)

]T

=

[
0 1 0 2

]T

The exact solution of the IVP (5) is u(x, t) = tan(t).
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Figure 4: Left: The behavior of the exact and numerical solutions of eq. (5). Right: Absolute errors
(
|ua −

uRK4| and |ua−uRKF|
)

between numerical solutions and the exact solution. Maximum absolute error 6.14703E−06
(by RKF method) and 2.69330E−04 (by RK4 method).

Stepsize used 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

u(t)
RK4 Method

0.00 0.1003 0.2027 0.3093 0.428 0.5463 0.6841 0.8423 1.0296 1.2600 1.5571

Stepsize used 0.0 0.1 0.3547 0.5380 0.6818 0.7959 0.8880 0.9633 1.00

u(t)
RKF Method

0.0000 0.1003 0.3704 0.5967 0.8116 1.0213 1.2296 1.4384 1.5574

Table 5: Comparison for numbers of steps between RK4 and RKF methods required to approximate u(t) at the rightmost
boundary value t = 1 of the chosen interval [0,1] for IVP (5). Per-step error tolerance of 10E−04 is used.

Example 5

The general form of Duffing oscillator with the damping effect is given in the following form:
d2u
d t2 +α

du
d t

+βu+ γu3 = f (t) (6)
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with initial conditions, u(0) = a, and u′(0) = b. Here, α , β , γ , a and b are real constants and f (t) is a real valued
function. Eq. (6) involves damping (the first derivative term) which means the amplitude of oscillations will reduce over
time, which will subsequently give a non-conservative system. The coefficient α controls the magnitude of damping.
Other two coefficients β and γ in the L.H.S. of eq. (6) are responsible for stiffness and the nonlinearity in the restoring
force respectively.

Usually non-conservative oscillators can not be handled by semi-analytical methods – though two relatively new
methods, one based on Laplace decomposition algorithm [11] and another based on modified differential transform
method [8] have found some success while approximating the free responses of Duffing oscillator with different
damping effects. In fact, in latter, the authors found solutions approximated by a semi-analytical method which is
nothing but an intelligent combination of Differential transforms method, Laplace transform and Pade approximation.
An efficient scheme based on modified Adomian decomposition method is proposed in [4] to obtain some accurate
closed-form approximations of solutions to nonlinear duffing oscillator. Among numerical methods, RK4 method is
considered as an effective method from the accuracy point of view, as quite often it is used as a benchmark solution.
For the lack of exact solutions for eq. (6), we have used the analytical solution obtained in [8] for comparison purpose
which is given below in (7).

ua(t) = e−0.60107t(0.000033846cos(15.0816)−0.00027134sin(15.08t)
)
+0.099966e−0.24894t cos(5.0125t), (7)

by choosing the equation parameters as α = 0.5, β = γ = 25, a = 0.1, b = 0 and f (t) = 0 for eq. (6).
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Figure 5: Left: The behavior of the analytical solution (7) and numerical solutions of eq. (6). Right: Absolute errors(
|ua− uRK4| and |ua− uRKF|

)
between numerical solutions and the analytical solution. Maximum absolute error

4.84305E−03 (by RKF method) and 4.84306E−03 (by RK4 method).

Stepsize
used

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

u(t)× E01
RK4 Method

1.0000 0.8785 0.5519 0.1090 −0.3383 −0.6828 −0.8469 −0.7995 −0.5626 −0.2026 0.1899

Stepsize
used

0.0 0.1 0.283 0.463 0.675 0.858 1.0

u(t)× E01
RKF Method

1.0000 0.8785 0.1890 −0.5746 −0.8316 −0.3609 0.1907

Table 6: Comparison for numbers of steps between RK4 and RKF methods required to approximate u(t) at the rightmost
boundary value t = 1 of the chosen interval [0,1] for eq. (6). Per-step error tolerance of 10E−04 is used.

Conclusions

In this note we have revisited an embedded Runge-Kutta method proposed by Fehlberg which performs extra steps
in order to estimate the error and adjusts the stepsize in an adaptive fashion. Adaptive time-stepping strategy makes
it possible to achieve the desired accuracy at a relatively low cost. For all IVPs under considerations, the numerical
results exhibit that RKF method provides more accurate approximations than the classical Runge-Kutta method. The
amount of improvement on error estimation is in good agreement with the theoretical expectation. Moreover, in almost

153

Journal of Advances in Mathematics vol 16 (2019) ISSN: 2347-1921 https://rajpub.com/index.php/jam



every example, the scheme based on RKF method is required to generate less number of approximations to arrive at the
right endpoint of the finite interval - thus demonstrating the effectiveness of the adaptive stepsize control feature of the
method. Though the cost per time step increases substantially, adaptive time-stepping enhances the robustness of the
code, the overall efficiency and the credibility of the simulation results. Despite of their popularity in solving linear and
nonlinear systems of ODEs which can be attributed to their computational efficiency as well as their self-starting nature,
they suffer from one serious issue which limits their ability to derive high order approximations. It stems from the fact
that they seek out a lot of information about the solution during one step, but all of that information is discarded before
the start of the next step. In future, we would like to investigate the computational performances of various multi-step
methods that use information from past steps to try to increase the accuracy of the solution without using additional
function evaluations particularly while solving stiff systems of ODEs.
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