https://cirworld.com/index.php/jam

Journal of Advances in Mathematics Vol 15 (2018) ISSN: 2347-1921

ON ALMOST $C(\alpha)$ -MANIFOLD SATISFYING SOME CONDITIONS ON THE WEYL PROJECTIVE CURVATURE TENSOR

ÜMİT YILDIRIM

ABSTRACT. In the present paper, we have studied the curvature tensors of almost $C(\alpha)$ -manifolds satisfying the conditions $P(\xi, X)R = 0$, $P(\xi, X)\tilde{Z} = 0$, $P(\xi, X)P = 0$, $P(\xi, X)S = 0$ and $P(\xi, X)\tilde{C} = 0$. According these cases, we classified almost $C(\alpha)$ -manifolds.

1. INTRODUCTION

In [10], authors studied the Weyl projective curvature tensor in an N(k)contact metric manifold and classified N(k)-contact metric manifolds.

In [3] and [9], we searched the properties of curvature tensors of an almost $C(\alpha)$ -manifold satisfying $\widetilde{Z}(\xi, X)R = \widetilde{Z}(\xi, X)\widetilde{Z} = \widetilde{Z}(\xi, X)S = \widetilde{Z}(\xi, X)P = 0$ and Ricci semi-symmetric, projective semi-symmetric, quasi-conformal semisymmetric.

De U. C. and Sarkar A. [4] studied properties of projective curvature tensor to generalized Sasakian space form. Atçeken M. [2] studied generalized Sasakian space form satisfying certain conditions on the concircular curvature tensor. Özgür M. and De U. C. [6] researched some certain curvature conditions satisfied by quasi-conformal curvature tensor in Kenmotsu manifolds. Arslan K., Murathan C. and Özgür C. produced the works on contact manifold curvature tensor[1].

Motivated by the studies of the above authors, in this paper we classify almost $C(\alpha)$ -manifolds, which satisfy the curvature conditions $P(\xi, X)R = 0$, $P(\xi, X)\tilde{Z} = 0$, $P(\xi, X)P = 0$, $P(\xi, X)S = 0$ and $P(\xi, X)\tilde{C} = 0$, where P is the Weyl projective curvature tensor, \tilde{Z} is the concircular curvature tensor, S is the Ricci tensor and \tilde{C} is quasi-conformal curvature tensor.

Key words and phrases. Almost $C(\alpha)$ -manifold, weyl projective curvature tensor, concircular curvature tensor, real space form.

²⁰⁰⁰ Mathematics Subject Classification. 53C15, 53C44, 53D10.

ÜMİT YILDIRIM

2. Preliminaries

An odd-dimensional Riemannian manifold (M, g) is said to be an almost co-Hermitian or almost contact metric manifold if there exist on M a (1, 1)tensor field ϕ , a vector field ξ (called the structure vector field) and a 1-form η such that

(2.1)
$$\eta(\xi) = 1, \qquad \phi^2 X = -X + \eta(X)\xi,$$

(2.2)
$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y),$$

(2.3)
$$\phi \xi = 0, \qquad \eta o \phi = 0,$$

for any vector field X, Y on M.

The Sasaki form (or fundamental 2-form) Φ of an almost co-Hermitian manifold (M, g, ϕ, ξ, η) is defined by

$$\Phi(X,Y) = g(X,\phi Y)$$

for all X, Y on $\in \chi(M)$ and this form satisfies $\eta \wedge \Phi^n \neq 0$. This means that every almost co-Hermitian manifold is orientable and (η, Φ) defines an almost cosymplectic structure on M. If this associated structure is cosymplectic $(d\Phi = d\eta = 0), M$ is called an almost co-Kähler manifold. The associated almost cosymplectic structure is a contact structure and is an almost Sasakian manifold when $\Phi = d\eta$. It is well known that every contact manifold has an almost Sasakian structure.

The Nijenhuis tensor of the (1,1)-tensor field ϕ is the (1,2)-tensor field $[\phi, \phi]$ defined by

(2.4)
$$[\phi, \phi](X, Y) = \phi^2[X, Y] + [\phi X, \phi Y] - \phi[\phi X, Y] - \phi[X, \phi Y],$$

where [X, Y] is the Lie bracket of $X, Y \in \chi(M)$.

On the other hand, an almost co-complex structure is called integrable if $[\phi, \phi] = 0$ and normal if $[\phi, \phi] + 2d\eta \otimes \xi = 0$. A co-Kähler manifold (or normal cosymplectic manifold) is an integrable (or equivalently, a normal) almost contact Kähler manifold, while a Sasakian manifold is a normal almost Sasakian manifold[5].

The Riemannian connections ∇ of Sasakian, co-Kähler and Kenmotsu manifolds have some well known properties which allow us to characterize these manifolds.

3

Theorem 2.1. Let (M, g, ϕ, ξ, η) be an almost co-Hermitian manifold with Riemannian connection ∇ . Then

- (i) M is co-Kählerian if and only if $\nabla \phi = 0$,
- (ii) M is Sasakian if and only if

$$(\nabla_X \phi)Y = g(X, Y)\xi - \eta(Y)X,$$

(iii) M is Kenmotsu manifold if and only if

$$(\nabla_X \phi) Y = g(\phi X, Y) \xi - \eta(Y) \phi X.$$

for all $X, Y \in \chi(M)[5]$.

Theorem 2.2. ξ is Killing vector field for co-Kähler and Sasaki manifolds, *i.e.*

$$g(\nabla_X \xi, Y) + g(X, \nabla_Y \xi) = 0,$$

while for Kenmotsu manifolds we have

$$g(\nabla_X \xi, Y) - g(X, \nabla_Y \xi) = 0.$$

for all $X, Y \in \chi(M)[5]$.

Theorem 2.3. Let R be the Riemann curvature tensor on M. For all $X, Y, Z, W \in \chi(M)$, we have

(i) for M co-Kählerian:

$$R(X, Y, Z, W) = R(X, Y, \phi Z, \phi W);$$

(ii) for M Sasakian:

$$R(X, Y, Z, W) = R(X, Y, \phi Z, \phi W) - g(X, Z)g(Y, W) + g(X, W)g(Y, Z)$$

+
$$g(X, \phi Z)g(Y, \phi W) - g(X, \phi W)g(Y, \phi Z);$$

(iii) for a Kenmotsu manifold M:

$$R(X, Y, Z, W) = R(X, Y, \phi Z, \phi W) + g(X, Z)g(Y, W) - g(X, W)g(Y, Z)$$

-
$$g(X, \phi Z)g(Y, \phi W) + g(X, \phi W)g(Y, \phi Z),$$

Definition 2.4. An almost $C(\alpha)$ -manifold M is an almost co-Hermitian manifold such that the Riemann curvature tensor satisfies the following property: $\exists \alpha \in R$ such that

$$R(X, Y, Z, W) = R(X, Y, \phi Z, \phi W) + \alpha \{-g(X, Z)g(Y, W) + g(X, W)g(Y, Z) + g(X, \phi Z)g(Y, \phi W) - g(X, \phi W)g(Y, \phi Z)\}.$$

for all $X, Y, Z, W \in \chi(M)$.

ÜMİT YILDIRIM

Moreover, if such a manifold has constant ϕ -sectional curvature equal to c, then its curvature tensor is given by

$$R(X,Y)Z = \left(\frac{c+3\alpha}{4}\right) \{g(Y,Z)X - g(X,Z)Y\}$$

+ $\left(\frac{c-\alpha}{4}\right) \{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$
+ $\left(\frac{c-\alpha}{4}\right) \{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi$
(2.6) $- g(Y,Z)\eta(X)\xi\}.$

A normal almost $C(\alpha)$ -manifold is called $C(\alpha)$ -manifold[5].

Co-Kählerian, Sasakian and Kenmotsu manifolds are, respectively, C(0), C(1) and C(-1)-manifolds.

Theorem 2.5. An almost co-Hermitian manifold M is α -Sasakian if and only if for all $X, Y \in \chi(M)$

(2.7)
$$(\nabla_X \phi) Y = \alpha \{ g(X, Y) \xi - \eta(X) Y \}.$$

(ii) If M is α -Sasakian, then ξ is a Killing vector field and

(2.8)
$$\nabla_X \xi = -\alpha \phi X$$

for all $X \in \chi(M)$.

(iii) An α -Sasakian manifold is a $C(\alpha^2)$ -manifold[5].

Theorem 2.6. An almost co-Hermitian manifold is an α -Kenmotsu manifold if and only if

(2.9)
$$(\nabla_X \phi)Y = \alpha \{g(\phi X, Y)\xi - \eta(Y)\phi X\},\$$

(2.10)
$$\nabla_X \xi = \alpha \{ -X + \eta(X)\xi \},$$

for all $X, Y \in \chi(M)$.

(ii) An α -Kenmotsu manifold is a $C(-\alpha^2)$ -manifold[5].

The concept of quasi-conformal curvature tensor was defined by K. Yano and S. Sawaki [8]. Quasi-conformal curvature tensor of a (2n+1)-dimensional Riemannian manifold is defined as

$$C(X,Y)Z = aR(X,Y)Z + b[S(Y,Z)X - S(X,Z)Y + g(Y,Z)QX (2.11) - g(X,Z)QY] - \frac{r}{2n+1}[\frac{a}{2n} + 2b][g(Y,Z)X - g(X,Z)Y],$$

where, a and b are arbitrary constants, Q, S and r denote the Ricci operator, Ricci tensor and scalar curvature of manifold, respectively. If $\tilde{C} = 0$, then manifold is said to be quasi-conformal flat.

Let M be (2n+1)-dimensional Riemannian manifold. The Weyl projective curvature tensor field is defined by [7]

(2.12)
$$P(X,Y)Z = R(X,Y)Z - \frac{1}{2n}[S(Y,Z)X - S(X,Z)Y],$$

for any $X, Y, Z \in \chi(M)$.

Let (M,g) be an (2n + 1)-dimensional Riemannian manifold. Then the concircular curvature tensor \widetilde{Z} is defined by

(2.13)
$$\widetilde{Z}(X,Y)Z = R(X,Y)Z - \frac{r}{2n(2n+1)}(g(Y,Z)X - g(X,Z)Y),$$

for all $X, Y, Z \in \chi(M)$, where r is the scalar curvature of M[7].

3. An almost $C(\alpha)$ -Manifold Satisfying Certain Conditions on the Weyl Projective Curvature Tensor

In this section, we will give the main results for this paper.

Let M be (2n + 1)-dimensional almost $C(\alpha)$ -manifold and we denote the Riemannian curvature tensor of R, then we have from (2.6), for $X = \xi$,

(3.1)
$$R(\xi, Y)Z = \alpha \{g(Y, Z)\xi - \eta(Z)Y\}.$$

In the same way, choosing $Z = \xi$ in (2.6), we have

(3.2)
$$R(X,Y)\xi = \alpha\{\eta(Y)X - \eta(X)Y\}.$$

In (3.2), choosing $Y = \xi$, we obtain

(3.3)
$$R(X,\xi)\xi = \alpha\{X - \eta(X)\xi\}.$$

Also, from (2.6), we obtain

(3.4)
$$\eta(R(X,Y)Z) = \alpha \{g(Y,Z)\eta(X) - g(X,Z)\eta(Y)\}.$$

In the same way choosing $X = \xi$ in (2.11), we have

$$\widetilde{C}(\xi, Y)Z = \{a\alpha + 2n\alpha b - \frac{r}{2n+1}[\frac{a}{2n} + 2b]\}\{g(Y, Z)\xi - \eta(Z)Y\}$$

$$(3.5) + b\{S(Y, Z)\xi - \eta(Y)QY\}.$$

In (3.5), choosing $Z = \xi$, we obtain

$$\widetilde{C}(\xi, Y)\xi = \{a\alpha + 2n\alpha b - \frac{r}{2n+1}[\frac{a}{2n} + 2b]\}\{\eta(Y)\xi - Y\}$$

$$(3.6) + b\{2n\alpha\eta(Y)\xi - QY\}.$$

Also, from (2.13) we have

(3.7)
$$\widetilde{Z}(\xi, X)Y = \{\alpha - \frac{r}{2n(2n+1)}\}\{g(X,Y)\xi - \eta(Y)X\}$$

and

(3.8)
$$\widetilde{Z}(\xi, X)\xi = \{\alpha - \frac{r}{2n(2n+1)}\}\{\eta(X)\xi - X\}.$$

Also, from (2.12), we have

(3.9)
$$P(\xi, Y)Z = \alpha g(Y, Z)\xi - \frac{1}{2n}S(Y, Z)\xi.$$

From (2.6), we can state

$$R(X, e_i)e_i + R(X, \phi e_i)\phi e_i + R(X, \xi)\xi = \sum_{i=1}^n \{ (\frac{3\alpha + c}{4})\{nX - g(X, e_i)e_i + nX - g(X, \phi e_i)\phi e_i + X - g(X, \xi)\xi \} + (\frac{c - \alpha}{4})\{3g(X, \phi e_i)\phi e_i - 2n\eta(X)\xi + 3g(X, \phi^2 e_i)\phi^2 e_i\eta(X)\xi - X\}\},$$
(3.10)

for $\{e_1, e_2, ..., e_n, \phi e_1, ..., \phi e_n, \xi\}$ orthonormal basis of M. From (3.10), for $Y \in \chi(M)$, we obtain

$$S(X,Y) = \left(\frac{\alpha(3n-1)+c(n+1)}{2}\right)g(X,Y)$$

$$(3.11) + \left(\frac{(\alpha-c)(n+1)}{2}\right)\eta(X)\eta(Y),$$

which is equivalent to

(3.12)
$$QX = \left(\frac{\alpha(3n-1) + c(n+1)}{2}\right)X + \left(\frac{(\alpha-c)(n+1)}{2}\right)\eta(X)\xi.$$

From (3.11), we can give the following corollary.

Also, from (3.11), we can easily see

(3.13)
$$r = n[\alpha(3n+1) + c(n+1)],$$

$$(3.14) S(X,\xi) = 2n\alpha\eta(X),$$

and

Theorem 3.1. Let M be (2n+1)-dimensional an almost $C(\alpha)$ -manifold. Then, $P(\xi, X)R = 0$ if and only if M reduce real space form with constant sectional curvature c.

Proof. Suppose that $P(\xi, X)R = 0$. Then, we have

$$(P(\xi, X)R)(U, W)Z = P(\xi, X)R(U, W)Z - R(P(\xi, X)U, W)Z - R(U, P(\xi, X)W)Z - R(U, W)P(\xi, X)Z (3.16) = 0.$$

Using (3.9) in (3.16), we obtain

$$= \alpha \{g(X, R(U, W)Z)\xi - g(X, U)R(\xi, W)Z \\ - g(X, W)R(U, \xi)Z - g(X, Z)R(U, W)\xi \} \\ - \frac{1}{2n} \{S(X, R(U, W)Z)\xi - S(X, U)R(\xi, W)Z \\ - S(X, W)R(U, \xi)Z - S(X, Z)R(U, W)\xi \} \\ = 0.$$
(3.17)

Putting $U = \xi$ in (3.17) and using the equations (3.1) and (3.2), we have

(3.18)
$$\frac{1}{2n}S(X,W)\eta(Z) = \alpha \{g(X,W)\eta(Z) + \eta(Z)\eta(X)\eta(W) - g(W,Z)\eta(X)\},$$

which implies that

$$S(X,W) = 2n\alpha g(X,W).$$

So, the almost $C(\alpha)$ -manifold is an Einstein manifold. In this case $r = 2n\alpha(2n+1)$. Taking into account of (3.13), we obtain $\alpha = c$, which implies that

$$R(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}.$$

The converse is obvious.

Theorem 3.2. Let M be (2n+1)-dimensional an almost $C(\alpha)$ -manifold. Then, $P(\xi, X)\widetilde{Z} = 0$ if and only if M is a real space form with sectional curvature c.

Proof. Suppose that $P(\xi, X)\widetilde{Z} = 0$, we have

$$(P(\xi, X)Z)(U, W)Z = P(\xi, X)Z(U, W)Z - Z(P(\xi, X)U, W)Z$$

- $\widetilde{Z}(U, P(\xi, X)W)Z - \widetilde{Z}(U, W)P(\xi, X)Z$
(3.19) = 0.

Using (2.13) and (3.9) in (3.19), we obtain

$$0 = \alpha \{ g(X, \widetilde{Z}(U, W)Z)\xi - g(X, U)\widetilde{Z}(\xi, W)Z - g(X, W)\widetilde{Z}(U, \xi)Z - g(X, Z)\widetilde{Z}(U, W)\xi \} - \frac{1}{2n} \{ S(X, \widetilde{Z}(U, W)Z)\xi - S(X, U)\widetilde{Z}(\xi, W)Z - \widetilde{Z}(\xi, W)Z \}$$

 $(3.20) - S(X,W)\widetilde{Z}(U,\xi)Z - S(X,Z)\widetilde{Z}(U,W)\xi\}.$

In (3.20), choosing $U = \xi$ and using (2.13), (3.7), (3.8) and (3.14), we have

$$0 = [\alpha - \frac{1}{2n(2n+1)}] \{ \alpha g(X,Z)W - \alpha g(X,Z)\eta(W)\xi - \alpha g(X,W)\eta(Z)\xi + \frac{1}{2n}S(X,W)\eta(Z)\xi + \frac{1}{2n}S(X,Z)\eta(W)\xi \}$$

(3.21)
$$- \frac{1}{2n}S(X,Z)W\}.$$

Inner product both sides of the equation by ξ , we have

$$[\alpha - \frac{r}{2n(2n+1)}]\{\frac{1}{2n}S(X,W) - \alpha g(X,W)\} = 0$$

If $r = 2n\alpha(2n+1)$, from (3.13), we obtain $\alpha = c$. This implies that M is a real space form. Otherwise $S(X, Y) = 2n\alpha g(X, Y)$. This tells us $r = 2n\alpha(2n+1)$. **Theorem 3.3.** Let M be (2n+1)-dimensional an almost $C(\alpha)$ -manifold. Then, $P(\xi, Y)P = 0$ if and only if M reduce real space form with constant sectional curvature $c = \alpha$.

Proof. Suppose that $P(\xi, Y)P=0$, we have

$$(P(\xi, Y)P)(Z, U)W = P(\xi, Y)P(Z, U)W - P(P(\xi, Y), U)W - P(Z, P(\xi, Y)U)W - P(Z, U)P(\xi, Y)W (3.22) = 0.$$

Using (3.9) in (3.22), we have

$$\begin{array}{lcl} 0 &=& \alpha\{g(Y,P(Z,U)W)\xi - \alpha g(Y,Z)g(U,W)\xi + \frac{1}{2n}g(Y,Z)S(U,W)\xi \\ &-& \frac{1}{2n}g(Y,U)S(Z,W)\xi + \alpha g(Y,U)g(W,Z)\xi\} \\ &+& \frac{1}{2n}\{-S(Y,P(Z,U)W)\xi + \alpha g(U,W)S(Y,Z)\xi - \frac{1}{2n}S(Y,Z)S(U,W)\xi \\ (3.23)+& \frac{1}{2n}S(Y,U)S(Z,W)\xi - \alpha S(Y,U)g(W,Z)\xi\}. \end{array}$$

Using the equations (2.12) and (3.11) in (3.23), we obtain

$$\left[\frac{(\alpha-c)(n+1)}{4n}\right]\left[R(Z,U)W - \alpha\{g(U,W)Z - g(W,Z)U\}\right] = 0,$$

which proves our assertion.

Theorem 3.4. Let M be (2n+1)-dimensional an almost $C(\alpha)$ -manifold. Then, $P(\xi, Y)\tilde{C} = 0$ if and only if M has either α -sectional curvature or it is an Einstein manifold.

Proof. Suppose that $P(\xi, Y)\widetilde{C} = 0$, we have

$$(P(\xi, Y)\widetilde{C})(Z, U)W = P(\xi, Y)\widetilde{C}(Z, U)W - \widetilde{C}(P(\xi, Y)Z, U)W - \widetilde{C}(Z, P(\xi, Y)U)W - \widetilde{C}(Z, U)P(\xi, Y)W (3.24) = 0.$$

Using (3.9) in (3.24), we obtain

$$0 = \alpha \{g(Y, \widetilde{C}(Z, U)W)\xi - g(Y, Z)\widetilde{C}(\xi, U)W \\ - g(Y, U)\widetilde{C}(Z, \xi)W - g(Y, W)\widetilde{C}(Z, U)\xi \} \\ - \frac{1}{2n} \{S(Y, \widetilde{C}(Z, U)W)\xi - S(Y, Z)\widetilde{C}(\xi, U)W \\ - S(Y, U)\widetilde{C}(Z, \xi)W - S(Y, W)\widetilde{C}(Z, U)\xi \} \\ = 0.$$

$$(3.25) = 0.$$

In (3.25), choosing $Z = \xi$ and using (3.5) and (3.6), we obtain

$$0 = \alpha \{a\alpha + 2n\alpha b - \frac{r}{2n+1} [\frac{a}{2n} + 2b] \} \{g(Y, QU) - 2n\alpha g(Y, U)\}$$

$$(3.26) + b\{S(Y, QU) - S(U, Y)\}$$

Using (3.12) in (3.26) and choosing $U = \phi U$, we have
 $[\frac{(n+1)(c-\alpha)}{2}]\{bS(\phi U, Y) + [a\alpha + 2n\alpha b - \frac{r}{2n+1}[\frac{a}{2n} + 2b]]g(\phi U, Y)\} = 0.$
The proof is completed

The proof is completed.

Theorem 3.5. Let M be (2n+1)-dimensional an almost $C(\alpha)$ -manifold. Then, $P(\xi, X)S = 0$ if and only if M is an Einstein manifold.

Proof. Suppose that $P(\xi, X)S = 0$, we have

(3.27) $S(P(\xi, X)U, W) + S(U, P(\xi, X), W) = 0.$

In (3.27), using (3.9), we have

(3.28)
$$\alpha\{g(X,W)\xi + g(X,U)\xi\} - \frac{1}{2n}\{S(X,W)\xi + S(X,U)\xi\} = 0$$

Inner product both sides of (3.28) by $\xi \in \chi(M)$, and choosing $U = \xi$, we have $S(X, W) = 2n\alpha g(X, W)$.

So, M is an Einstein manifold.

ÜMİT YILDIRIM

References

- [1] Arslan K., Murathan C. and Özgür C., On contact manifolds satisfying certain curvature conditions, An. Univ. Bucuresti Math. (2000), 49(2), 17-26.
- [2] Atçeken M., On generalized Sasakian space forms satisfying certain conditions on the concircular curvature tensor, Bulletin of Mathematical Analysis and Applications, 6(1)(2014), 1-8.
- [3] Atçeken M. and Yıldırım Ü., On almost $C(\alpha)$ -manifold satisfying certain conditions on the concircular curvature tensor, Pure and Applied Mathematics Journal, Special Issue: Applications of Geometry. Vol. 4, No. 1-2, (2015), pp. 31-34. doi: 10.11648/j.pamj.s.2015040102.18.
- [4] De U.C. and Sarkar A., On the Projective curvature tensor of Generalized Sasakianspace forms, Quaestiones Mathematicae, 33(2010), 245-252.
- [5] Janssens D. and Vanhecke L., Almost contact structure and curvature tensors, Kodai Math. J., 4(1981), 1-27.
- [6] Özgür C. and De U.C., On the quasi-conformal curvature tensor of a Kenmotsu manifold, Mathematica Pannonica, (2006), 17(2), 221-228.
- [7] Yano K. and Kon M., Structures manifolds, Singapore, World Scientific, (1984).
- [8] Yano K. and Sawaki S., Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom. 2(1968), 161-184.
- [9] Yıldırım Ü. and Atçeken M., On curvature tensors of an almost $C(\alpha)$ -manifold, International Journal of Physical and Mathematical Sciences, Vol. 5, No. 1(2015), 53-61.
- [10] Yıldız A., De U. C., Murathan C. and Arslan K., On the weyl projective curvature tensor of an N(k)-contact metric manifold, Mathematica Pannonica, 21/1 (2010), 1-14.

Gaziosmanpasa University, Faculty of Arts and Sciences, Department of Mathematics, 60100 Tokat/TURKEY

E-mail address: umit.yildirim@gop.edu.tr