Journal of Advances in Mathematics Vol 16 (2019) ISSN: 2347-1921

Some Techniques to Compute Multiplicative Inverses for Advanced Encryption Standard

W. Eltayeb Ahmed

Mathematics and Statistics Department, Faculty of Science, Al-Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

waahmed@imamu.edu.sa

Abstract

This paper gives some techniques to compute the set of multiplicative inverses, which uses in the Advanced Encryption Standard (AES).

Keywords: Multiplicative Inverse, Extended Euclidean Algorithm, AES.

1 Introduction

Sometimes, we want to create another form to a specific mapping seeking for simplicity. In AES, the substitution table is made for substituting a byte by another for all byte values from 0 to 255. The first operation in constructing this table is computing ^[1] the multiplicative inverse of an input byte in Galois field (GF (2⁸)), based on the irreducible polynomial $P(x) = x^8 + x^4 + x^3 + x + 1$. To do this, we can use the extended Euclidean algorithm ^[2].

Although it is straightforward, some people think it is a complicated way.

Here, are some techniques to compute these multiplicative inverses.

2 The methodology

The multiplicative inverse of M(x) modulo P(x) is $M^{-1}(x)$ such that

$$M(x)M^{-1}(x) = 1 \left(mod \ P(x) \right) \quad \to (1)$$

and this implies

$$P(x) \mid [M(x)M^{-1}(x) - 1] \to (2)$$

we can take

$$P(x) = M(x)M^{-1}(x) - 1 \to (3)$$

Let T[M(x)] represents the multiplicative inverse of M(x) modulo P(x), and Q(x) = P(x) + 1, then

$$M(x)T[M(x)] = Q(x) \quad \rightarrow (4)$$

There is one of two possible equations:

$$M(x)A(x) = Q(x) \rightarrow (5)$$

or

$$M(x)[A(x) + B(x)] = Q(x) \quad \rightarrow (6)$$

In case 1,

c<u>)</u>

https://cirworld.com/index.php/jam

https://cirworld.com/index.php/jam

$$T[M(x)] = A(x) \rightarrow (7)$$

The multiplicative inverse is $\frac{Q(x)}{M(x)}$.

In case 2,

 $T[M(x)] = A(x) + B(x) \rightarrow (8)$

Write Eq (6) as

$$M(x)A(x) + M(x)B(x) = Q(x) \quad \to (9)$$

let

$$M(x)A(x) = Q(x) - r(x) \quad \rightarrow (10)$$

where

 $r(x) = M(x)B(x) \rightarrow (11)$

rewrite Eq (11) as

 $r(x)C(x) = M(x) \rightarrow (12)$

then

$$B(x) = \frac{1}{C(x)} \quad \to (13)$$

and since

$$1 = Q(x) \pmod{P(x)} \to (14)$$

we get

$$B(x) = \frac{Q(x)}{C(x)} = T[C(x)] \quad \to (15)$$

and Eq (8) becomes

$$T[M(x)] = A(x) + T[\mathcal{C}(x)] \quad \to (16)$$

To compute T[M(x)], we need to compute $T[C(x)] = T\left[\frac{M(x)}{r(x)}\right]$.

So, the multiplicative inverse of M(x) modulo P(x) equals $q(x) = \frac{Q(x)}{M(x)}$, if there is no a remiander r(x), and equals q(x) plus the multiplicative inverse of $\frac{M(x)}{r(x)}$, if there is a remainder r(x).

3 Results and Discussion

Let us take some examples:

Example (1): Computing T(x)

i

$$M(x)$$
 $q(x)$
 $r(x)$
 $Q(x)$

 1
 x
 $x^7 + x^3 + x^2 + 1$
 0
 $x^8 + x^4 + x^3 + x$

so,

$$T(x) = x^7 + x^3 + x^2 + 1$$

Example (2): Computing $T(x^2)$

i	M(x)	q(x)	r(x)	Q(x)
1	<i>x</i> ²	$x^6 + x^2 + x$	x	$x^8 + x^4 + x^3 + x$

then

 $T(x^2) = x^6 + x^2 + x + T(x)$

$$= x^7 + x^6 + x^3 + x + 1$$

Example (3): Computing $T(x^4)$

i	M(x)	q(x)	r(x)	Q(x)
1	<i>x</i> ⁴	$x^4 + 1$	$x^3 + x$	$x^8 + x^4 + x^3 + x$
2	$x^3 + x$	x	<i>x</i> ²	<i>x</i> ⁴
3	<i>x</i> ²	x	x	$x^3 + x$
4	x	x	0	$x^3 + x$

then

 $T(x^{4}) = q_{1} + T\{q_{2} + T[q_{3} + T(q_{4})]\}$ $= x^{4} + 1 + T\{x + T[x + T(x)]\}$

We note that this technique iterates computing multiplicative inverse when $r_i(x) \neq 0$, and we maybe face computing a multiplicative inverse many times, in the example (3), we need to compute T(x), T[x + T(x)], and $T\{x + T[x + T(x)]\}$.

Instead of doing this, we put

$$M_2(x) = r_1(x) + 1 \quad \rightarrow (17)$$

and starting from the step (i = 2), we repeat the solution til $r_i(x) = 1$.

If $r_i(x) = 1$, $i \ge 2$, then

$$T[M(x)] = T_i[M(x)] = q_i(x)T_{i-1}[M(x)] + T_{i-2}[M(x)] \to (18)$$

where

 $T_0[M(x)] = 1 \quad \rightarrow (19)$

and

$$T_1[M(x)] = q_1(x)T_0[M(x)] = q_1(x) \rightarrow (20)$$

 $M_2(x)$ becomes $r_1(x) + 1$ so, Q(x) must be Q(x) + 1, we prove the Eq (18) by the mathematical induction, (let us just take the first step).

When i = 2

 $T_2[M(x)] = q_2(x)T_1[M(x)] + T_0[M(x)]$

$$= \frac{M(x)}{r_1(x) + 1} \left[\frac{Q(x) - r_1(x)}{M(x)} \right] + 1$$
$$= \frac{Q(x) + 1}{r_1(x) + 1}$$
$$= \frac{Q(x)}{M_2(x)}$$

Example (4): Repeating compute $T(x^4)$ using this second technique.

i	M(x)	q(x)	r(x)	Q(x)
1	x ⁴	$x^4 + 1$	$x^3 + x$	$x^8 + x^4 + x^3 + x$
2	$x^3 + x$	x	<i>x</i> ²	<i>x</i> ⁴
2′	$x^3 + x + 1$	x	$x^2 + x$	<i>x</i> ⁴
3	$x^2 + x$	<i>x</i> + 1	1	$x^3 + x + 1$

 $r_3(x) = 1$, so, from Eq (18)

$$T[M(x)] = q_3(x)T_2[M(x)] + T_1[M(x)]$$

= $q_3(x)[q_2(x)q_1(x) + 1] + q_1(x)$
= $(x + 1)[x(x^4 + 1) + 1] + x^4 + 1$
= $x^6 + x^5 + x^4 + x^2$

To avoid repeating step (i = 2), we use this technique when $r_1(x) \neq 0$ immediately.

Example (5): Computing $T(x^{6} + x^{5} + x^{4} + x^{2})$

We found $T(x^4) = x^6 + x^5 + x^4 + x^2$, let us compute $T(x^6 + x^5 + x^4 + x^2)$

i	M(x)	q(x)	r(x)	Q(x)
1	$x^6 + x^5 + x^4 + x^2$	$x^2 + x$	$x^5 + x$	$x^8 + x^4 + x^3 + x$
2	$x^5 + x + 1$	<i>x</i> + 1	$x^4 + 1$	$x^6 + x^5 + x^4 + x^2$
3	$x^4 + 1$	x	1	$x^5 + x + 1$

 $r_3(x) = 1$, so, from Eq (18)

 $T[M(x)] = q_3(x)T_2[M(x)] + T_1[M(x)]$ = $q_3(x)[q_2(x)q_1(x) + 1] + q_1(x)$ = $x[(x + 1)(x^2 + x) + 1] + x^2 + x$ = x^4

Conclusions

These techniques compute a multiplicative inverse of M(x) modulo P(x) by easy and clear steps, and when $r_1(x) \neq 0$, we can use the formula Eq (18), after using Eq (17).

References

- 1. Advanced Encryption Standard (AES), FIPS Publication 197, National Institute of Standards and Technology (NIST), November 26, 2001.
- 2. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, New York, 1997.