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Abstract 

This paper obtains a characterisation of the congruences on *-simple type A I-semigroups. The *-locally 

idempotent-separating congruences, strictly *-locally idempotent-separating congruences and minimum 

cancellative monoid congruences, are characterised. 
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1.   Introduction  

 For a semigroup 𝑆,  𝐸(𝑆) will denote the set of idempotents of 𝑆. If 𝑆 is a semigroup with non-empty set of 

idempotents 𝐸(𝑆), we define a partial order  "≤" on E (S) such that 𝑒 ≤ 𝑓 if and only if  𝑒𝑓 = 𝑓𝑒 = 𝑒.  Let  𝐼 denote 

the set of all integers and let  ℕ0 denote the set of non-negative integers. A semigroup 𝑆 is said to be an 𝐼-

semigroup if and only if  𝐸(𝑆) is order isomorphic to  𝐼 under the reverse of the partial order. 

The structure theorem for *-simple type A I-semigroups was established in [8], as an extension of the structure 

theorem for simple I-inverse semigroups and *-simple type A 𝜔-semigroups due to Warne [10] and Asibong-

Ibe [1]. This paper is a follow up of the study of congruences on *-bisimple type A I-semigroups studied by 

Ndubuisi and Asibong-Ibe [7], where the congruences were identified as idempotent-separating congruence 

and minimum cancellative monoid congruence.  

Earlier investigations in [6] and [10] studied congruences on *-simple type A 𝜔-semigroups and congruences 

on simple I-inverse semigroups respectively. Determination of congruences throughout this paper is based on 

their description in [6]. 

This work is divided as follows. Section 2 contains a minimum of results concerning *-simple type A 𝐼-

semigroups. The content of section 3 is a determination of *-locally idempotent-separating congruences, strictly 

*-locally idempotent-separating congruences and minimum cancellative monoid congruences of a *-simple type 

A I-semigroup. 

Let us recall some definitions which will be useful in the study.  

Let 𝑆 be a semigroup and let 𝑎, 𝑏 𝜖 𝑆. Then the elements 𝑎 and 𝑏 are said to to be ℛ∗-related written 𝑎 ℛ∗ 𝑏  if 

and only if for all 𝑥, 𝑦 𝜖 𝑆1, 𝑥𝑎 = 𝑦𝑎 if and only if  𝑥𝑏 = 𝑦𝑏. The relation  ℒ∗ is defined  

dually. The join of the equivalence relations ℛ∗ and ℒ∗ is denoted by 𝒟∗ and their intersection by  ℋ∗. Thus 

𝑎 ℋ∗𝑏 if and only if  𝑎 ℛ∗𝑏 and 𝑎 ℒ∗𝑏. In general  ℛ∗ ∘ ℒ∗ ≠ ℒ∗ ∘ ℛ∗ as shown in [3]. 

Following Fountain [4] a semigroup is an abundant semigroup if every ℒ∗-class and every ℛ∗-class in S contain 

idempotents. An abundant semigroup S is adequate [3] if 𝐸(𝑆)forms a semilattice. In an adequate semigroup 

every ℒ∗-class ℛ∗-class contains a unique idempotent. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KHALSA PUBLICATIONS

https://core.ac.uk/display/322471393?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.24297/jam.v16i0.8016


Journal of Advances in Mathematics Vol 16 (2019) ISSN: 2347-1921            https://cirworld.com/index.php/jam 

 8200 

Let 𝑎 be an element of an adequate semigroup S, and 𝑎∗ (𝑎†) denotes the unique idempotent in the ℒ∗-class  

𝐿𝑎
∗  ( ℛ∗-class  𝑅𝑎

∗  ) containing 𝑎. 

We remark that a type A (in particular, right type A) semigroup realized in Fountain [2] as a special type of right 

PP monoid with e-cancellable element where 𝑒 𝜖 𝐸(𝑆), the set of idempotents in S. An adequate semigroup S is 

said to be a type A semigroup if  𝑒𝑎 = 𝑎(𝑒𝑎)∗  and 𝑎𝑒 = (𝑎𝑒)†𝑎   for all 𝑎 𝜖 𝑆 and 𝑒 𝜖 𝐸(𝑆). 

We conclude this section by defining the relation 𝒥∗. Let S be a semigroup and 𝐼∗ be an ideal of S. Then 𝐼∗ is said 

to be a *-ideal if 𝐿𝑎
∗ ⊆ 𝐼∗ and 𝑅𝑎

∗ ⊆ 𝐼∗ for all 𝑎 𝜖 𝐼∗. The smallest *-ideal containing ‘a’ is the principal *-ideal 

generated by ‘a’ and is denoted by 𝐽∗(𝑎). For 𝑎, 𝑏 𝜖 𝑆, 𝑎 𝒥∗𝑏  if and only if 𝐽∗(𝑎) = 𝐽∗(𝑏). The relations  𝒥∗ contains 

𝒟∗.  

A semigroup S is said to be *-simple if the only *-ideal of S is itself. Clearly a semigroup is *-simple if all its 

elements are 𝒥∗-related. To have a clear picture of 𝒥∗-related elements we recall the following Lemma. 

Lemma 1.1 [3]. Let S be a semigroup and 𝑎, 𝑏 𝜖 𝑆. Then  𝑏 𝜖 𝐽∗(𝑎) if and only if there are elements 

 𝑎0, 𝑎1, … , 𝑎𝑛 𝜖 𝑆, 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑦1, 𝑦2, … , 𝑦𝑛 𝜖 𝑆
1 such that 𝑎 = 𝑎0, 𝑏 = 𝑎𝑛 and  𝑎𝑖𝒟

∗𝑥𝑖𝑎𝑖−1𝑦𝑖 , for 𝑖 = 1,2, … , 𝑛. 

Other basic results discussed in [3] will be assumed. The notation adopted in this paper is similar to that in 

Fountain [3], Howie [5], Asibong-Ibe [1] and Makanjuola [6]. 

Recently type A semigroups have been shown to be special type of restriction semigroups. In this case type A 

𝜔-semigroup will essentially be an 𝜔-restriction semigroups. The idea developed here will prove useful in the 

study of restriction semigroups. 

However, we will in this work retain the term type A semigroups generally. 

2. *-Simple Type A I-Semigroups 

Following [9], let 𝑇 = ⋃ 𝑀𝑖
𝑑−1
𝑖=0  be a chain of cancellative monoids. Each element  𝑥𝑖  𝜖 𝑇 is necessarily in 𝑀𝑖 for 

0 ≤ 𝑖 ≤ 𝑑 − 1. An identity  𝑒𝑖  𝜖 𝑀𝑖 is an idempotent in 𝑇. Clearly 𝑒𝑖  𝜖 𝑇 form a chain of idempotents  𝑒0 > 𝑒𝑖 >

⋯ > 𝑒𝑑−1. 

Let 𝜃 ∶ 𝑇 → 𝑀0 be a monoid morphism and let  𝑆 = 𝑇 × 𝐼 × 𝐼 (where 𝐼 is the set of all integers) be the set of all 

ordered triples (𝑥𝑖 , 𝑚, 𝑛) where 𝑚 𝜖 ℕ0, 𝑛 𝜖 𝐼, 0 ≤ 𝑖 ≤ 𝑑 − 1 and 𝑥𝑖  𝜖 𝑇.  

Define multiplication on S by the rule 

            (𝑥𝑖 , 𝑚, 𝑛)(𝑦𝑗 , 𝑝, 𝑞)             =  {
(𝑥𝑖 . 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝑗𝜃
𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝)                         if  𝑛 ≥ 𝑝

                                                                                                          
(𝑓𝑝−𝑛,𝑚

−1 . 𝑥𝑖𝜃
𝑝−𝑛. 𝑓𝑝−𝑛,𝑛 . 𝑦𝑗 , 𝑚 + 𝑝 − 𝑛, 𝑞)                        if  𝑛 ≤ 𝑝

            

where  𝜃0  is the identity automorphism of  𝑇, and f𝑜r  𝑚 𝜖 ℕ0, 𝑛 𝜖 𝐼, 𝑓0,𝑛 = 𝑒𝑖, the identity of  𝑀𝑖 , while for  𝑚 >

0, 𝑓𝑚,𝑛 = 𝑢𝑛+1𝜃
𝑚−1. 𝑢𝑛+2𝜃

𝑚−2…𝑢𝑛+(𝑚−1)𝜃. 𝑢𝑛+𝑚, and 

𝑓𝑚,𝑛
−1 = 𝑢𝑛+𝑚

−1  . 𝑢𝑛+(𝑚−1)
−1 𝜃…𝑢𝑛+2

−1 𝜃𝑚−2. 𝑢𝑛+1
−1 𝜃𝑚−1, where {𝑢𝑛 ∶ 𝑛 𝜖 𝐼} is a collection of T with  𝑢𝑛 = 𝑒𝑖 for  𝑛 > 0. 

Denote a semigroup formed by  𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) where 𝑇 = ⋃ 𝑀𝑖
𝑑−1
𝑖=0 . 

If for each i we now let  𝑀𝑖 = {𝑒𝑖}, a monoid with one element, we obtain the set  𝐼 × 𝐼 under the multiplication 

              (𝑚𝑑 + 𝑖, 𝑛𝑑 + 𝑖)(𝑝𝑑 + 𝑗, 𝑞𝑑 + 𝑗) = {

(𝑚𝑑 + 𝑖, (𝑛 + 𝑞 − 𝑝)𝑑 + 𝑖)                                        if  𝑛 ≥ 𝑝
                                                                                                          
((𝑚 + 𝑝 − 𝑛)𝑑 + 𝑗, 𝑞𝑑 + 𝑗)                                        if  𝑛 ≤ 𝑝
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We denote  𝐼 × 𝐼 under the above multiplication by  𝐵𝑑
∗  and call it the extended bicyclic semigroup. 

If we let  (𝑥𝑖 , 𝑚, 𝑛) be an idempotent in 𝑆. Then 

         (𝑥𝑖 , 𝑚, 𝑛) = (𝑥𝑖 , 𝑚, 𝑛)(𝑥𝑖 , 𝑚, 𝑛)                                              =

{
(𝑥𝑖 . 𝑓𝑛−𝑚,𝑚

−1 . 𝑥𝑖𝜃
𝑛−𝑚. 𝑓𝑛−𝑚,𝑛, 𝑚, 𝑛 − 𝑚 + 𝑛)      if  𝑛 ≥ 𝑚                                      

                                                                                                          
(𝑓𝑚−𝑛,𝑚

−1 . 𝑥𝑖𝜃
𝑚−𝑛. 𝑓𝑚−𝑛,𝑛. 𝑥𝑖 , 𝑚 − 𝑛 +𝑚, 𝑛)      if  𝑛 ≤ 𝑚                                     

 

in which case 𝑚 = 𝑛, 𝑥𝑖
2 = 𝑥𝑖 .  

Conversely, suppose 𝑥𝑖
2 = 𝑥𝑖 then we have that  (𝑥𝑖 , 𝑚, 𝑛)(𝑥𝑖 , 𝑚, 𝑛) = (𝑥𝑖 , 𝑚, 𝑛). Thus (𝑥𝑖 , 𝑚, 𝑛) is an idempotent 

if and only if  𝑚 = 𝑛 and  𝑥𝑖 is an idempotent in 𝑆. 

The following results were proved in [8]. 

Lemma 2.1. Let  𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) be a generalized Bruck-Reilly *-extension  of a monoid 𝑇, where 𝑇 = ⋃ 𝑀𝑖
𝑑−1
𝑖=0  is 

a finite chain of cancellative monoids  𝑀𝑖 . Let (𝑥𝑖 , 𝑚, 𝑛), (𝑦𝑗 , 𝑝, 𝑞)𝜖 𝑆 . Then 

i)   (𝑥𝑖 , 𝑚, 𝑛) ℛ
∗(𝑦𝑗 , 𝑝, 𝑞)  if and only if  𝑚 = 𝑝  and  𝑖 = 𝑗.  

ii)  (𝑥𝑖 , 𝑚, 𝑛) ℒ
∗(𝑦𝑗 , 𝑝, 𝑞)  if and only if  𝑛 = 𝑞  and  𝑖 = 𝑗.  

iii)  (𝑥𝑖 , 𝑚, 𝑛) 𝒥
∗(𝑦𝑗 , 𝑝, 𝑞). That is S is *-simple. 

Lemma 2.2.  𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) is a type A semigroup if and only  𝑇 is a type A semigroup 

Theorem 2.3. Let 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) be the generalized Bruck-Reilly *-extension of the monoid T where  𝑇 =

⋃ 𝑀𝑖
𝑑−1
𝑖=0  . Then S is a *-simple type A I-semigroup with d  𝒟∗-classes. 

     We conclude this section, with the structure theorem of *-simple type A I-semigroups. 

Theorem 2.4 [8].  Let 𝑆 be a *-simple type A I-semigroup with  𝑑  𝒟∗-classses. Then  𝑆 is isomorphic to a 

generalized Bruck-Reilly *-extension  𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) of a monoid 𝑇 , where 𝑇 = ⋃ 𝑀𝑖
𝑑−1
𝑖=0  is a finite chain of 

cancellative monoids  𝑀𝑖  and 𝜃 is an endomorphism of  𝑇 with image in  𝑀0 . 

3. The Congruences 

In this section, we will determine the congruence relations on a *-simple type A 𝐼-semigroup 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃). 

We first present the properties of the congruences and then show that every congruence relation  𝜌 on 𝑆  is 

either a *-locally idempotent-separating congruence (if no two distinct  𝒟∗-related idempotents are 𝜌-related) 

or all the idempotents are in one 𝜌-class. We also provide a method for constructing the strictly *-locally 

idempotent separating congruences. Lastly, we show that there is a minimum cancellative monoid congruence 

on  𝑆 . 

Lemma 3.1. Let 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) be a *-simple type A I-semigroup where 𝑇 = ⋃ 𝑀𝑖
𝑑−1
𝑖=0  is a semilattice of 

cancellative monoids. Then ℋ∗ is a congruence on S, and 𝑆/ℋ∗ ≅ 𝐵𝑑
∗ . 

Proof.  The mapping  𝜃 ∶ 𝑆 → 𝐵𝑑
∗  by  

                                    (𝑥𝑖 , 𝑚, 𝑛)𝜃 = (𝑚𝑑 + 𝑖, 𝑛𝑑 + 𝑖) 

is onto. It is a homomorphism since 
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((𝑥𝑖 , 𝑚, 𝑛)(𝑦𝑗 , 𝑝, 𝑞)) 𝜃 = {
(𝑥𝑖 . 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝑗𝜃
𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝)                  if  𝑛 ≥ 𝑝

                                                                                                          
(𝑓𝑝−𝑛,𝑚

−1 . 𝑥𝑖𝜃
𝑝−𝑛. 𝑓𝑝−𝑛,𝑛 . 𝑦𝑗 , 𝑚 + 𝑝 − 𝑛, 𝑞)                if  𝑛 ≤ 𝑝

    × 𝜃 

                                                 = {
(𝑥𝑖 . 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝑗𝜃
𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝)𝜃                  if  𝑛 ≥ 𝑝

                                                                                                          
(𝑓𝑝−𝑛,𝑚

−1 . 𝑥𝑖𝜃
𝑝−𝑛. 𝑓𝑝−𝑛,𝑛 . 𝑦𝑗 , 𝑚 + 𝑝 − 𝑛, 𝑞)𝜃                if  𝑛 ≤ 𝑝

 

                                                 = {

(𝑚𝑑 + 𝑖, (𝑛 + 𝑞 − 𝑝)𝑑 + 𝑖)                                         if  𝑛 ≥ 𝑝
                                                                                                          
((𝑚 + 𝑝 − 𝑛)𝑑 + 𝑗, 𝑞𝑑 + 𝑗)                                        if  𝑛 ≤ 𝑝

                 

                                                 = (𝑚𝑑 + 𝑖, 𝑛𝑑 + 𝑖)(𝑝𝑑 + 𝑗, 𝑞𝑑 + 𝑗) 

                                              = (𝑥𝑖 , 𝑚, 𝑛)𝜃 (𝑦𝑗 , 𝑝, 𝑞)𝜃. 

Thus  𝜃 is a homomorphism. 

Furthermore,  ((𝑥𝑖 , 𝑚, 𝑛)(𝑦𝑗 , 𝑝, 𝑞)) 𝜖  ℋ
∗ if and only if (𝑚𝑑 + 𝑖, 𝑛𝑑 + 𝑖) = (𝑝𝑑 + 𝑗, 𝑞𝑑 + 𝑗); hence 𝜃 ∘ 𝜃−1 = ℋ∗ 

and the result follows. 

Lemma 3.2. Let  𝜌 be a congruence on a *-simple type A 𝐼-semigroup 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) where  𝑇 = ⋃ 𝑀𝑖
𝑑−1
𝑖=0  . 

Suppose that  

(i)  (𝑒𝑖, 𝑚,𝑚) 𝜌 (𝑒𝑗, 𝑚,𝑚) then for any  𝑛 𝜖 𝐼, (𝑒𝑖 , 𝑛, 𝑛) 𝜌 (𝑒𝑗, 𝑛, 𝑛) 

(ii)  (𝑒𝑖 , 𝑚,𝑚) 𝜌 (𝑒𝑗 , 𝑚 + 1,𝑚 + 1) then for any  𝑛 𝜖 𝐼, (𝑒𝑖 , 𝑛, 𝑛) 𝜌 (𝑒𝑗 , 𝑛 + 1, 𝑛 + 1) 

Proof.  i) Let (𝑒0, 𝑛,𝑚), (𝑒0, 𝑚, 𝑛) 𝜖 𝑆, then 

                         (𝑒0, 𝑛,𝑚)(𝑒𝑖 , 𝑚,𝑚)(𝑒0, 𝑚, 𝑛) = (𝑒𝑖, 𝑛, 𝑛). 

                      (𝑒0, 𝑛,𝑚)(𝑒𝑗 , 𝑚,𝑚)(𝑒0, 𝑚, 𝑛) = (𝑒𝑗 , 𝑛, 𝑛), 

and 

                         (𝑒0, 𝑚, 𝑛)(𝑒𝑖 , 𝑛, 𝑛)(𝑒0, 𝑛,𝑚) = (𝑒𝑖, 𝑚,𝑚). 

                      (𝑒0, 𝑚, 𝑛)(𝑒𝑗 , 𝑛, 𝑛)(𝑒0, 𝑛,𝑚) = (𝑒𝑗, 𝑚,𝑚). 

ii) Let (𝑒0, 𝑛,𝑚), (𝑒0, 𝑚, 𝑛) 𝜖 𝑆, then we have 

                      (𝑒0, 𝑛,𝑚)(𝑒𝑖, 𝑚, 𝑛) = (𝑒𝑖, 𝑛, 𝑛). 

                        (𝑒0, 𝑛,𝑚)(𝑒𝑗, 𝑚 + 1,𝑚 + 1)(𝑒0, 𝑚, 𝑛) = (𝑒𝑗, 𝑛 + 1, 𝑛 + 1), 

and 

                        (𝑒0, 𝑚, 𝑛)(𝑒𝑖 , 𝑛, 𝑛)(𝑒0, 𝑛,𝑚) = (𝑒𝑖 , 𝑚,𝑚). 

                      (𝑒0, 𝑚, 𝑛)(𝑒𝑗 , 𝑛 + 1, 𝑛 + 1)(𝑒0, 𝑛,𝑚) = (𝑒𝑗 , 𝑚 + 1,𝑚 + 1). 

Hence the proof. 

   We now establish an important property of congruences on *-simple type A  𝐼-semigroups. 
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Theorem 3.3. A congruence 𝜌 on a *-simple type A I-semigroup is either a *-locally idempotent-separating 

congruence or all the idempotents are in one 𝜌-class. 

Proof. Suppose that the idempotent elements of S are not in one 𝜌-class and  𝑒𝑚𝑑+𝑖 𝜌 𝑒(𝑚+𝑘)𝑑+𝑖 for some 

 𝑚, 𝑘 𝜖 𝐼, 𝑘 > 0 and  0 ≤ 𝑖 ≤ 𝑑 − 1. We are to show that no two distinct  𝒟∗-related idempotents are 𝜌-related. 

Let  𝑘 = 1 which implies that 𝑒𝑚𝑑+𝑖 𝜌 𝑒(𝑚+1)𝑑+𝑖 . Using Lemma 3.2 and the fact that  𝑒𝑚 𝜌 𝑒𝑛 implies 𝑒𝑚 𝜌 𝑒𝑘 for 

every  𝑛 ≤ 𝑘 ≤ 𝑚 together with the transitive property of the congruence, we see that the idempotents are in 

one 𝜌-class which is contrary to our assumption. Thus, no two distinct  𝒟∗-related idempotents are 𝜌-related. 

Therefore 𝜌 is a *-locally idempotent-separating congruence. This completes the proof. 

    A typical *-idempotent-separating congruence of a *-simple type A I-semigroup is characterized in the 

theorem. 

Theorem 3.4. Let  𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) where 𝑇 = ⋃ 𝑀𝑖
𝑑−1
𝑖=0  . The relation  𝜌 on 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) defined by the rule: 

                        (𝑥𝑖 , 𝑚, 𝑛) 𝜌 (𝑦𝑗 , 𝑝, 𝑞) if and only if  𝑚 = 𝑝, 𝑛 = 𝑞, 𝑖 = 𝑗 and (𝑥𝑖 , 𝑦𝑗)𝜖 ker θ  

is a *-locally idempotent separating congruence 

Proof. It can be easily shown that 𝜌 is reflexive and symmetric. To show transitivity, we let (𝑥𝑖 , 𝑚, 𝑛) 𝜌 (𝑦𝑗 , 𝑝, 𝑞), 

(𝑦𝑗 , 𝑝, 𝑞) 𝜌 (𝑧𝑘 , 𝑢, 𝑣) for all (𝑥𝑖 , 𝑚, 𝑛), (𝑦𝑗 , 𝑝, 𝑞), (𝑧𝑘, 𝑢, 𝑣)𝜖 𝑆. Then 𝑚 = 𝑝, 𝑛 = 𝑞, 𝑖 = 𝑗, (𝑥𝑖 , 𝑦𝑗) 𝜖 ker 𝜃 and 𝑝 = 𝑢, 𝑞 =

𝑣, 𝑗 = 𝑘, (𝑦𝑗 , 𝑧𝑘) 𝜖 ker θ. 

Consequently, 𝑚 = 𝑢, 𝑛 = 𝑣, 𝑖 = 𝑘. Hence (𝑥𝑖 , 𝑧𝑘) 𝜖 ker 𝜃, which means that 𝜌 is transitive. 

Next is to show that  𝜌 is a congruence. Now let  𝑎 = (𝑥𝑖 , 𝑚, 𝑛), 𝑏 = (𝑦𝑗 , 𝑝, 𝑞). That 𝜌 is a congruence entails 

showing that 

                                 𝑎 𝜌 𝑏 implies  𝑎𝑔 𝜌 𝑏𝑔     (for right congruence) 

                               𝑎 𝜌 𝑏 implies  𝑔𝑎 𝜌 𝑔𝑏      (for left congruence) 

∀  𝑔 = (𝑧𝑘, 𝑤, 𝑙) 𝜖 𝑆 = 𝐺𝐵𝑅
∗(𝑇, 𝜃). 

    Consequently,            

                       𝑎𝑔 =  (𝑥𝑖 , 𝑚, 𝑛)(𝑧𝑘, 𝑤, 𝑙) 

                             = {
(𝑥𝑖 . 𝑓𝑛−𝑤,𝑤

−1 . 𝑧𝑘𝜃
𝑛−𝑤. 𝑓𝑛−𝑤,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑤)                  if  𝑛 ≥ 𝑤

                                                                                                          
(𝑓𝑤−𝑛,𝑚

−1 . 𝑥𝑖𝜃
𝑤−𝑛 . 𝑓𝑤−𝑛,𝑛. 𝑧𝑘 , 𝑚 + 𝑤 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑤

        

                      𝑏𝑔 = (𝑦𝑗 , 𝑝, 𝑞)(𝑧𝑘 , 𝑤, 𝑙) 

                            = {
(𝑦𝑗 . 𝑓𝑞−𝑤,𝑤

−1 . 𝑧𝑘𝜃
𝑞−𝑤. 𝑓𝑞−𝑤,𝑙 , 𝑝, 𝑞 + 𝑙 − 𝑤)                  if  𝑞 ≥ 𝑤

                                                                                                          
(𝑓𝑤−𝑞,𝑝

−1 . 𝑦𝑗𝜃
𝑤−𝑛 . 𝑓𝑤−𝑞,𝑞 . 𝑧𝑘, 𝑝 + 𝑤 − 𝑞, 𝑙)                if  𝑞 ≤ 𝑤

 

So, if  (𝑥𝑖 , 𝑚, 𝑛) 𝜌 (𝑦𝑗 , 𝑝, 𝑞), then 

           (𝑥𝑖 , 𝑚, 𝑛)(𝑧𝑘 , 𝑤, 𝑙) 𝜌 (𝑦𝑗 , 𝑝, 𝑞)(𝑧𝑘 , 𝑤, 𝑙) = 
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                                {
(𝑥𝑖 . 𝑓𝑛−𝑤,𝑤

−1 . 𝑧𝑘𝜃
𝑛−𝑤 . 𝑓𝑛−𝑤,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑤)                  if  𝑛 ≥ 𝑤

                                                                                                          
(𝑓𝑤−𝑛,𝑚

−1 . 𝑥𝑖𝜃
𝑤−𝑛. 𝑓𝑤−𝑛,𝑛 . 𝑧𝑘, 𝑚 + 𝑤 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑤

       

                    𝜌  {
(𝑦𝑗 . 𝑓𝑞−𝑤,𝑤

−1 . 𝑧𝑘𝜃
𝑞−𝑤 . 𝑓𝑞−𝑤,𝑙 , 𝑝, 𝑞 + 𝑙 − 𝑤)                  if  𝑞 ≥ 𝑤

                                                                                                          
(𝑓𝑤−𝑞,𝑝

−1 . 𝑦𝑗𝜃
𝑤−𝑞 . 𝑓𝑤−𝑞,𝑞 . 𝑧𝑘 , 𝑝 + 𝑤 − 𝑞, 𝑙)                if  𝑞 ≤ 𝑤

 

But  (𝑥𝑖 , 𝑚, 𝑛) 𝜌 (𝑦𝑗 , 𝑝, 𝑞)  if and only if  𝑚 = 𝑝, 𝑛 = 𝑞, 𝑖 = 𝑗  and  (𝑥𝑖 , 𝑦𝑗) 𝜖 ker 𝜃. 

Thus,                    {
(𝑥𝑖 . 𝑓𝑛−𝑤,𝑤

−1 . 𝑧𝑘𝜃
𝑛−𝑤 . 𝑓𝑛−𝑤,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑤)                  if  𝑛 ≥ 𝑤

                                                                                                          
(𝑓𝑤−𝑛,𝑚

−1 . 𝑥𝑖𝜃
𝑤−𝑛. 𝑓𝑤−𝑛,𝑛. 𝑧𝑘 , 𝑚 + 𝑤 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑤

       

                    𝜌  {
(𝑦𝑗 . 𝑓𝑛−𝑤,𝑤

−1 . 𝑧𝑘𝜃
𝑛−𝑤. 𝑓𝑛−𝑤,𝑙 , 𝑚, 𝑛 + 𝑙 − 𝑤)                  if  𝑛 ≥ 𝑤

                                                                                                          
(𝑓𝑤−𝑛,𝑚

−1 . 𝑦𝑗𝜃
𝑤−𝑛 . 𝑓𝑤−𝑛,𝑛. 𝑧𝑘 , 𝑚 + 𝑤 − 𝑛, 𝑙)                if  𝑛 ≤ 𝑤

 

Hence  𝜌 is a right congruence. 

That  𝜌 is a left congruence follows similarly. Thus  𝜌  is a congruence. 

Furthermore, (𝑒𝑖 , 𝑚,𝑚) 𝜌 (𝑒𝑖, 𝑛, 𝑛) implies 𝑚 = 𝑛 which implies  (𝑒𝑖 , 𝑚,𝑚) = (𝑒𝑖 , 𝑛, 𝑛). Thus any two distinct 

idempotent elements which are 𝒟∗-related cannot lie in the same 𝜌-class. Hence the proof. 

We will now construct the strictly *-locally idempotent-separating congruences on *-simple type A 𝐼-

semigroups. 

3.5. Notation.  Let  𝑘0, 𝑘1, 𝑘2, 𝑘3, … , 𝑘𝑡 be a sequence of non-empty integers, satisfying  0 ≤ 𝑘0 < 𝑘1… < 𝑘𝑡 <
𝑑 − 1, 𝑘0 = −1, 𝑘𝑡+1 = 𝑑 − 1. 

Define a relation  𝜌 = 𝜌(𝑘0, 𝑘1, … , 𝑘𝑡) on  𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) by   

(𝑥𝑖 , 𝑚, 𝑛) 𝜌 (𝑦𝑗 , 𝑝, 𝑞)  implies  

{
 
 

 
 
𝑚 = 𝑝, 𝑛 = 𝑞 for 𝑘𝑣−1 < 𝑖, 𝑗 ≤ 𝑘𝑣 ,   0 ≤ 𝑣 ≤ 𝑡 + 1

 
or   𝑚 = 𝑝 + 1, 𝑛 = 𝑞 + 1 for 𝑖 ≤ 𝑘0 and 𝑗 > 𝑘𝑡  

    
or   𝑚 + 1 = 𝑝, 𝑛 + 1 = 𝑞 for 𝑗 ≤ 𝑘0 and 𝑖 > 𝑘𝑡      

  

Lemma 3.6.  With the notation introduced, 𝜌 = 𝜌(𝑘0, 𝑘1, … , 𝑘𝑡) is a strictly *-locally idempotent-separating 

congruence on 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃). 

Proof. Suppose 𝜌 is a strictly *-locally idempotent-separating congruence on 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃). Then we have that 

                     (𝑥𝑖 , 𝑚, 𝑛) 𝜌 (𝑦𝑗 , 𝑝, 𝑞) implies (𝑦𝑗 , 𝑛,𝑚) 𝜌 (𝑥𝑖 , 𝑞, 𝑝) 

since it is evident that the relation 𝜌 defined above is a congruence on a type A semigroup 

(where (𝑦𝑗 , 𝑛,𝑚) is inverse of  (𝑥𝑖 , 𝑚, 𝑛) and (𝑥𝑖 , 𝑞, 𝑝) is the inverse of  (𝑦𝑗 , 𝑝, 𝑞) ). 

Now we have that (𝑥𝑖 , 𝑚, 𝑛)
† 𝜌 (𝑦𝑗 , 𝑝, 𝑞)

†  and (𝑥𝑖 , 𝑚, 𝑛)
∗𝜌 (𝑦𝑗 , 𝑝, 𝑞)

∗ implies (𝑒𝑖 , 𝑚,𝑚) 𝜌 (𝑒𝑖 , 𝑝, 𝑝) and 

(𝑒𝑖, 𝑛, 𝑛) 𝜌 (𝑒𝑖 , 𝑞, 𝑞). 

That is, we have that  𝑒𝑚𝑑+𝑖  𝜌 𝑒𝑝𝑑+𝑗   and  𝑒𝑛𝑑+𝑖  𝜌 𝑒𝑞𝑑+𝑗 . 

Suppose  𝑚𝑑 + 𝑖 ≥ (𝑝 + 1)𝑑 + 𝑗 then  𝑒𝑝𝑑+𝑗  𝜌 𝑒(𝑝+1)𝑑+𝑗 then  𝑖 < 𝑗, 𝑚 ≤ 𝑝 + 1.     𝑖 > 𝑗, 𝑚 ≤ 𝑝. 
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Similarly, we have   𝑗 < 𝑖, 𝑝 ≤ 𝑚 + 1.    𝑗 > 𝑖, 𝑝 ≤ 𝑚. 

Consequently, we have  𝑖 < 𝑗, 𝑚 ≤ 𝑝 + 1 ≤ 𝑚 + 1. That is  𝑚 = 𝑝  or  𝑝 + 1. 

𝑖 > 𝑗,   𝑚 ≤ 𝑝 ≤ 𝑚 + 1.  That is  𝑝 = 𝑚  or  𝑚 + 1. 

Interchanging the roles of m and n, p and q we have that 

𝑖 < 𝑗, 𝑛 = 𝑞  or  𝑞 + 1.   𝑖 > 𝑗, 𝑞 = 𝑛 or  𝑛 + 1. 

Now using Lemma 3.2 and considering some cases, we have the desired result.  

  We now consider cancellative monoid congruences. These can be characterized as follows: 

Theorem 3.7.  Let  𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) be a *-simple type A I-semigroup. Define a relation  𝜎 on 𝑆 by 

                                               (𝑥𝑖 , 𝑚, 𝑛) 𝜎 (𝑦𝑗 , 𝑝, 𝑞)   

if and only if  𝑚 − 𝑛 = 𝑝 − 𝑞 and 𝑥𝑖 = 𝑦𝑗 . Then 

i)  𝜎 is the minimum congruence on  𝑆. 

ii) 𝑆/ 𝜎 is a cancellative monoid. 

Proof.  i) That 𝜎 is reflexive and symmetric can be easily checked. To show transitivity, let (𝑥𝑖 , 𝑚, 𝑛) 𝜎 (𝑦𝑗 , 𝑝, 𝑞) 

and  (𝑦𝑗 , 𝑝, 𝑞) 𝜎 (𝑧𝑘 , 𝑟, 𝑐) for (𝑥𝑖 , 𝑚, 𝑛), (𝑦𝑗 , 𝑝, 𝑞), (𝑧𝑘 , 𝑟, 𝑐) 𝜖 𝑆. Then we have 𝑚 − 𝑛 = 𝑝 − 𝑞, 𝑥𝑖 = 𝑦𝑗  and 𝑝 − 𝑞 =

𝑟 − 𝑐, 𝑦𝑗 = 𝑧𝑘 . This implies 𝑚 − 𝑛 = 𝑟 − 𝑐 and 𝑥𝑖 = 𝑧𝑘 . Thus 𝜎 is transitive. 

Now let  𝑎 = (𝑥𝑖 , 𝑚, 𝑛), 𝑏 = (𝑦𝑗 , 𝑝, 𝑞). That  𝜎 is a congruence entails showing that 

                                  𝑎 𝜎 𝑏 ⟹ 𝑎𝑢 𝜎 𝑏𝑢     (for right congruence) 

                              𝑎 𝜎 𝑏 ⟹ 𝑢𝑎 𝜎 𝑢𝑏      (for left congruence) 

∀  𝑢 = (𝑧𝑘 , 𝑟, 𝑐) 𝜖 𝑆.  So, we have that  

              𝑎𝑢 = (𝑥𝑖 , 𝑚, 𝑛)(𝑧𝑘, 𝑟, 𝑐) = {
(𝑥𝑖 . 𝑓𝑛−𝑟,𝑟

−1 . 𝑧𝑘𝜃
𝑛−𝑟 . 𝑓𝑛−𝑟,𝑐 , 𝑚, 𝑛 + 𝑐 − 𝑟)                  if  𝑛 ≥ 𝑟

                                                                                                          
(𝑓𝑟−𝑛,𝑛

−1 . 𝑥𝑖𝜃
𝑟−𝑛. 𝑓𝑟−𝑛,𝑛. 𝑧𝑘 , 𝑚 + 𝑟 − 𝑛, 𝑐)                if  𝑛 ≤ 𝑟

 

              𝑏𝑢 = (𝑦𝑗 , 𝑝, 𝑞)(𝑧𝑘, 𝑟, 𝑐) = {
(𝑦𝑗 . 𝑓𝑞−𝑟,𝑟

−1 . 𝑧𝑘𝜃
𝑞−𝑟 . 𝑓𝑞−𝑟,𝑐 , 𝑝, 𝑞 + 𝑐 − 𝑟)                       if  𝑞 ≥ 𝑟

                                                                                                          
(𝑓𝑟−𝑞,𝑞

−1 . 𝑦𝑗𝜃
𝑟−𝑞 . 𝑓𝑟−𝑞,𝑞 . 𝑧𝑘 , 𝑝 + 𝑟 − 𝑞, 𝑐)                      if  𝑞 ≤ 𝑟

 

Suppose  (𝑥𝑖 , 𝑚, 𝑛) 𝜎 (𝑦𝑗 , 𝑝, 𝑞), we have 

   𝑚 − (𝑛 + 𝑐 − 𝑟) = (𝑚 − 𝑛) + (𝑟 − 𝑐)  and   𝑝 − (𝑞 + 𝑐 − 𝑟) = (𝑝 − 𝑞) + (𝑟 − 𝑐) 

     𝑚 + 𝑟 − 𝑛 − 𝑐 = (𝑚 − 𝑛) + (𝑟 − 𝑐)  and  𝑝 + 𝑟 − 𝑞 − 𝑐 = (𝑝 − 𝑞) + (𝑟 − 𝑐). 

Since  𝑚 − 𝑛 = 𝑝 − 𝑞, we have that (𝑚 − 𝑛) + (𝑟 − 𝑐) = (𝑝 − 𝑞) + (𝑟 − 𝑐). 

Consequently, 𝜎 is a right congruence. That 𝜎 is a left congruence follows similarly. Thus 𝜎 is a congruence. 
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Suppose 𝜌 is any other congruence. Then we have (1,𝑚,𝑚) 𝜌 (1,0,0) for all  𝑚 𝜖 𝐼. If  (𝑥𝑖 , 𝑚, 𝑛) 𝜎 (𝑦𝑗 , 𝑝, 𝑞), then 

(𝑥𝑖 , 𝑚, 𝑛)(1, 𝑝, 𝑝) = (𝑦𝑗 , 𝑝, 𝑞)(1, 𝑝, 𝑝) for some  𝑝 𝜖 𝐼 

Since  (1,𝑚,𝑚) 𝜌 (1,0,0), then (𝑥𝑖 , 𝑚, 𝑛)(1, 𝑝, 𝑝) 𝜌 (𝑥𝑖 , 𝑚, 𝑛). 

Similarly, (𝑦𝑗 , 𝑝, 𝑞)(1, 𝑝, 𝑝) 𝜌 (𝑦𝑗 , 𝑝, 𝑞) so that (𝑥𝑖 , 𝑚, 𝑛) 𝜌 (𝑦𝑗 , 𝑝, 𝑞). Hence  𝜎 ⊆  𝜌. 

ii) Obviously the class of  𝜎 containing the idempotents is the identity element for  𝑆/𝜎.  So we have 

  (1,𝑚, 𝑛)𝜎 (𝑦𝑗 , 𝑝, 𝑞)𝜎 = (𝑦𝑗 , 𝑝, 𝑞)𝜎 . Thus  𝑆/𝜎 is a monoid.  

To show that  𝑆/𝜎 is cancellative, let  𝑎 = (𝑥𝑖 , 𝑚, 𝑛), 𝑏 = (𝑦𝑗 , 𝑝, 𝑞). That  𝑆/𝜎 is cancellative entails showing that 

                         𝑎𝜎 𝑢𝜎 = 𝑏𝜎 𝑢𝜎 ⟹ 𝑎𝜎 = 𝑏𝜎          (for right cancellative) 

                         𝑢𝜎 𝑎𝜎 = 𝑢𝜎 𝑏𝜎 ⟹ 𝑎𝜎 = 𝑏𝜎          (for left cancellative) 

∀  𝑢 = (𝑧𝑘 , 𝑟, 𝑐) 𝜖 𝑆.  So, we have that 

                         𝑎𝜎 𝑢𝜎 = (𝑥𝑖 , 𝑚, 𝑛)𝜎 (𝑧𝑘 , 𝑟, 𝑐)𝜎 = (𝑦𝑗 , 𝑝, 𝑞)𝜎 (𝑧𝑘 , 𝑟, 𝑐)𝜎 

                                    = 𝑏𝜎 𝑢𝜎 . 

The rest of the proof follows from a routine calculation. 

For the remainder of this section the group of integers under addition will be denoted by ℤ.  

We now describe the nature of  𝑆/𝜎 in the case where  𝜃 is the identity mapping. 

Theorem 3.8. Let 𝑆 = 𝐺𝐵𝑅∗(𝑇, 𝜃) be a *-simple type A I-semigroup in which 𝜃 is the identity mapping. Define a 

multiplication on the set  𝑇 × ℤ  by the rule that 

                                 (𝑥𝑖 , 𝑚𝑑 + 𝑖)(𝑦𝑗 , 𝑛𝑑 + 𝑖) = (𝑥𝑖𝑦𝑗 , (𝑚𝑑 + 𝑖) + (𝑛𝑑 + 𝑖)) 

for  𝑥𝑖 , 𝑦𝑗 𝜖 𝑇, 𝑚, 𝑛 𝜖 ℤ . Then  𝑆/𝜎 ≅ 𝑇 × ℤ . 

Proof.  Define a map  𝜑 ∶ 𝑆 → 𝑇 × ℤ  by the rule that  (𝑥𝑖 , 𝑚, 𝑛)𝜑 = (𝑥𝑖𝑦𝑗 , (𝑚𝑑 + 𝑖) − (𝑛𝑑 + 𝑖)). 

Evidently, 𝜑 is well defined. It is known that  𝑇 × ℤ  is a cancellative monoid with identity (1,0). 

Now let (𝑥𝑖 , 𝑚, 𝑛) and (𝑦𝑗 , 𝑝, 𝑞) be any two elements of 𝑆. Then 

((𝑥𝑖 , 𝑚, 𝑛)(𝑦𝑗 , 𝑝, 𝑞))𝜑 = {
(𝑥𝑖 . 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝑗𝜃
𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝)                  if  𝑛 ≥ 𝑝

                                                                                                          
(𝑓𝑝−𝑛,𝑛

−1 . 𝑥𝑖𝜃
𝑝−𝑛 . 𝑓𝑝−𝑛,𝑛. 𝑦𝑗 , 𝑚 + 𝑝 − 𝑛, 𝑞)                if  𝑛 ≤ 𝑝

    × 𝜑 

                        = {
(𝑥𝑖 . 𝑓𝑛−𝑝,𝑝

−1 . 𝑦𝑗𝜃
𝑛−𝑝. 𝑓𝑛−𝑝,𝑞 , 𝑚, 𝑛 + 𝑞 − 𝑝) 𝜑                  if  𝑛 ≥ 𝑝

                                                                                                          
(𝑓𝑝−𝑛,𝑛

−1 . 𝑥𝑖𝜃
𝑝−𝑛. 𝑓𝑝−𝑛,𝑛 . 𝑦𝑗 , 𝑚 + 𝑝 − 𝑛, 𝑞) 𝜑                if  𝑛 ≤ 𝑝

 

                        = {
(𝑥𝑖  𝑦𝑗 , 𝑚𝑑 + 𝑖 − (𝑛 + 𝑞 − 𝑝)𝑑 + 𝑖)                       if  𝑛 ≥ 𝑝
                                                                                                          
(𝑥𝑖 𝑦𝑗 , (𝑚 + 𝑝 − 𝑛)𝑑 + 𝑗 − 𝑞𝑑 + 𝑗)                       if  𝑛 ≤ 𝑝
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                        = {
(𝑥𝑖  𝑦𝑗 , (𝑚 − 𝑛)𝑑 + 𝑖 + (𝑝 − 𝑞)𝑑 + 𝑖)                   if  𝑛 ≥ 𝑝
                                                                                                          
(𝑥𝑖 𝑦𝑗 , (𝑚 − 𝑛)𝑑 + 𝑗 + (𝑝 − 𝑞)𝑑 + 𝑗)                   if  𝑛 ≤ 𝑝

 

                        = (𝑥𝑖 𝑦𝑗 , (𝑚 − 𝑛)𝑑 + 𝑖 + (𝑝 − 𝑞)𝑑 + 𝑗) 

                        =  (𝑥𝑖 , (𝑚 − 𝑛)𝑑 + 𝑖)(𝑦𝑗 , (𝑝 − 𝑞)𝑑 + 𝑗) 

                        = (𝑥𝑖 , (𝑚𝑑 + 𝑖) − (𝑛𝑑 + 𝑖)) (𝑦𝑗 , (𝑝𝑑 + 𝑗) − (𝑞𝑑 + 𝑗)) 

                        = (𝑥𝑖 , 𝑚, 𝑛)𝜑 (𝑦𝑗 , 𝑝, 𝑞)𝜑 . 

Thus  𝜑 is a homomorphism. 

Furthermore,  

                         (𝑥𝑖 , 𝑚, 𝑛)𝜑 = (𝑦𝑗 , 𝑝, 𝑞)𝜑 

if and only if  (𝑥𝑖 , (𝑚𝑑 + 𝑖) − (𝑛𝑑 + 𝑖)) =  (𝑦𝑗 , (𝑝𝑑 + 𝑗) − (𝑞𝑑 + 𝑗)) 

if and only if   (𝑚𝑑 + 𝑖) − (𝑛𝑑 + 𝑖) = (𝑝𝑑 + 𝑗) − (𝑞𝑑 + 𝑗) and  𝑥𝑖 = 𝑦𝑗 

if and only if  (𝑥𝑖 , 𝑚, 𝑛)𝜎 = (𝑦𝑗 , 𝑝, 𝑞)𝜎 . 

That is  𝜑 ∘ 𝜑−1 = 𝜎 . 
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