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Abstract 

In this paper, we consider parameter estimation problem for Vasicek model driven by fractional lévy processes 

defined 

 

We construct least squares estimator for drift parameters based on time‐continuous observations, the 

consistency and asymptotic distribution of these estimators are studied in the non‐ergodic case. In contrast to 

the fractional Vasicek model, it can be regarded as a Lévy generalization of fractional Vasicek model. 
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1.Introduction 

Statistical inference for stochastic differential equations is a main research direction in probability theory and its 

applications. When the noise is a standard Brownian motion, such problems have been extensively studied and 

some surveys and complete literatures for this direction could be found in Bishwal [2]. Moreover, since the 

seminal work of Vasicek [15], the Vasicek model 

                                （1.1） 

driven by standard Brownian motion  has been extensively applied in various fields, such as economics 

and finance, biology, physics, chemistry, medicine and environmental studies, where  are unknown, the first 

term describes the so‐called drift component  The parameter    determines  the reversion speed 

of the stochastic component to their long‐term mean  .  The economic interpretation of this mean‐reversion 

component is that stochastic price fluctuations around the mean and price peaks are only temporarily, caused 

by for example power plant outages or capacity shortages. Indeed, when this model is used to describe some 

phenomena, it is important to identify the unknown parameters in this model. As a result, the parameter 

estimation problem for the Vasicek process driven by Brownian motion has played an important role in 

econometrics and becomes a interesting problem in the literature. 

When  the process degenerates into the well‐known Ornstein‐Uhlenbeck process. If the parameter 

 is unknown and the process  can be observed continuously, then an important 

problem is to estimate the parameter  based on the (single path) observation .  The most popular 

approaches are either the maximum likelihood estimators (MLE) or the least squares estimators (LSE), and in this 

case they coincide. For  (ergodic case),  the MLE of  is asymptotically normal (Kutoyants [9]).  For  

(non‐ergodic case), the MLE of  is asymptotically Cauchy (Dietz and Kutoyants [6]). 

As an extension of Brownian motion, the fractional Brownian motion (fBm) has become an object of intensive 

study, due to its interesting properties and its applications in various scientific areas such as hydrology, 

telecommunications, fluid dynamics, turbulence, image processing, economics and finance. Recall that the fBm 

 with Hurst index  is the only centred Gaussian self‐similar process with stationary 

increments, satisfies , , , the covariance function is given by 

                                                             （1.2） 

It has stochastic integral representation in terms of a standard Brownian motion: 

                  （1.3） 

where ,  is standard Brownian motion. For ,  coincides with the standard 

Brownian motion , but  is neither a semi martingale nor a Markov process unless . 

If the Brownian motion in the Vasicek model (1.1) is replaced with fBm, we get the following fractional Vasicek 

model (fVm) 

                       （1.4） 

Parameter  determines the persistence in . Depending on the sign of , the model can capture the stationary, 

the explosive, and the null recurrent behavior. The fVm was first used to describe the dynamics in volatility by 

Comte and Renault [3]. Other applications of fVm can be found in Comte, Coutin and Renault [4], Corlay, Lebovits 
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and Véhel [5] references therein. Despite many applications of fVm in practice, estimation and the asymptotic 

theory in fVm has received little attention in the literature. Xiao and Yu [16] propose estimators for  and  

develop the asymptotic theory for the estimators. 

When  a very important special case of fVm is the fractional Ornstein‐Uhlenbeck process. The parameter 

estimation for  has been extensively studied using the MLE method (see Prakasa Rao [11]) or using the LSE 

technique (see Hu and Nualart [8]). 

On the basis of sufficient study of fBm, many authors have proposed to use more general stochastic processes 

and random fields as stochastic models. Such applications have raised many interesting theoretical questions 

about stochastic processes and fields in general. Therefore, some generalizations of the fBm have been 

introduced such as sub‐fractional Brownian motion, bifractional Brownian motion, weighted‐fractional Brownian 

motion, fractional Lévy processes. However, in contrast to the extensive studies on fBm, there has been only a 

little systematic investigation on the statistical inference of other fractional processes. The main reason for this 

is the complexity of dependence structures. Recently, Fink and Klüppelberg [7] proved that the fractional Lévy 

driven Ornstein‐Uhlenbeck processes (FLOUP) has unique stationary pathwise solution of the corresponding 

Langevin equation and the increments of an FLOUP exhibits long‐range dependence. 

However, there has been no study on parametric inference for Vasicek model with fractional Lévy noises yet. 

Motivated by the aforementioned works, as a first attempt, in this paper, we consider the generalized Vasicek 

model driven by fractional Lévy process  (the precise definition is given below in Definition 2.1), and it is 

defined by the following stochastic differential equations 

                                 （1.5） 

In the present paper, we assume that the parameters  and  are unknown. We shall use the least 

square method to construct their estimators under the continuous observations, respectively. Our main results 

and aims are described as follows. 

Firstly, we use the least square method to obtain the estimators of  and . We introduce least squares 

estimators of  and  of the forms 

                                       （1.6） 

and 

                                             （1.7） 

for all  The two estimators are motivated by the following heuristic argument. By minimizing the 

contrast function 

                                       （1.8） 

where  denotes the differentiation of  with respect to . 

As a result, we can explicitly get the two least squares estimators  and  as follows 
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                                    （1.9） 

                           （1.10） 

for all , where the integral  is interpreted as the Young integral (see, for example, Young [10]).  

We shall prove the consistency of  and ,  that is,  

 

and 

 

where the notation  denotes “almost surely convergence". 

The rest of this paper is organized as follows. In Section2, we present some preliminaries for lévy process and 

fractional lévy process. In Section3, we study the consistency of the least square’s estimator  and . 

2.Preliminaries 

2.1. Lévy processes. In this subsection, we mainly introduce the elementary properties of Lévy processes that 

will be used in following. More studies on the Lévy process can be found in Sato [13], Samorodnitsky and Taqqu 

[12] and the references therein. 

Let  be Lévy processes in  without Brownian component. It is determined by its characteristic 

function in the Lévy‐Khintchine form 

 

where 

 

where  and  is the Lévy measure of  on  that satisfies 

 

This is a necessary and sufficient condition for  to have finite mean and variance given by 

 

Furthermore, we restrict , then 



 

8017 

 

 

and 

 

Throughout this paper we will use a two side Lévy process  constructed by taking two 

independent copies  of a one‐side Lévy process and setting 

                                （2.1） 

2.2 Fractional Lévy processes. In this subsection, we briefly recall the definition and properties of fractional 

Lévy process. 

As an extension of fractional Brownian motion, fractional Lévy process is of interest in practical applications 

because of its stationarity of increments and long-range dependence. However, it is not Gaussian. Actually, the 

very large utilization of the fractional Brownian motion in practice (hydrology, telecommunications) are due to 

these properties (long range dependence). One prefers in general fractional Brownian motion before other 

processes because it is Gaussian and the calculus for it is easier. However, in concrete situations when the 

Gaussianity is not plausible for the model, one can use for example the fractional Lévy process. There exists a 

consistent literature that focuses on different theoretical and applications aspects of the fractional Lévy process. 

For example, Bender, Lindner and Schick’[1] studied the finite variation of fractional Lévy processes, Tikanmäki 

and Mishura [14] define fractional Lévy processes using the compact interval representation and proved that 

the fractional Lévy processes presented via different integral transformations have the same finite dimensional 

distributions if and only if they are fractional Brownian motions. 

In this paper, we are interested in fractionally integrated processes. Therefore, we will work with the fractional 

integration parameter  rather than the Hurst parameter . Moreover, we restrict 

ourselves to  as we are interested in the long range dependence case. Based on the moving average 

integral representation of fractional Brownian motion, the class of fractional Lévy processes is introduced by 

replacing the Brownian motion by a general Lévy process with zero mean, finite variance and no Brownian 

component. 

Definition 2.1.  (Marquardt [10])  Let  be a zero‐mean two‐sided Lévy process with  

and without a Brownian component. For fractional integration parameter , a stochastic process 

 

is called a fractional Lévy process (fLp). 

fLp has the sample path properties as follows. 

  Hölder continuity.  For every , there exists a continuous modification of  and there exist an almost 

surely positive random variable  and a constant  such that 
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  Stationary increments.   is a process with stationary increments. 

  Symmetry.  . 

 is locally self‐similar with parameter , that is, for every fixed  

 

here  is a linear fractional stable motion with expression 

 

where  is symmetric ‐stable Lévy process (see Samorodnitsky and Taqqu[12]). 

The following two Lemma gives an integral relationship between fractional lévy processes and integral with 

Lévy processes and the second‐order property of the stochastic integral respect to fractional lévy processes. 

Lemma2.1. (Marquardt[10]) Let ,  is the completion of  with respect to the norm 

, then 

                                               （2.2） 

where the equality holds in the  sense and  denotes the Riemann‐Liouville fractional integrals defined by 

. 

Lemma2.2. (Marquardt[10]) Let . The 

       （2.3） 

        （2.4） 

In particular, using the Young integral of (2.4),  we can rewrite the solution of (1.5) as 

                                    （2.5） 

Furthermore, we have 
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                  （2.6） 

According to (1.9), (1.10) and (2.5), we can rewrite  and  as 

              （2.7） 

and 

                   （2.8） 

3. Asymptotic behavior of the least squares estimator 

In this section, let , we consider the strong consistency of  and . Moreover, we also investigate the 

asymptotic of the estimator for the long term mean. 

Theorem 3.1.  Assume ,  The 

                                               （3.1） 

and 

                                                   （3.2） 

For prove Theorem  3.1,  we need the following lemma. 

Assume . Let  be defined as . Then  is well‐

defined, and as  

 

Proof.   Using the Young integral and definition of , we can write 
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                                            （3.3） 

Hence  is well‐defined, since 

 

Moreover, for any , 

 

By using Borel‐Cantell’s lemma, we can obtain  as .  This completes the proof. 

Proof of Theorm 3.1 . By (2.7),  we have 

     （3.4） 

We first consider the term 

 

From (2.6) and L’Hôspital’s rule, we can get 

                                        （3.5） 

And 

                            （3.6） 
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Combining (3.5) and (3.6), we have 

                      （3.7） 

Next we consider term 

 

From (3.5),  we get 

                                               （3.8） 

By Young integral together with L’Hôspital’s rule, we get 

  （3.9） 

So, we can easy get 

                        （3.10） 

Combining (3.7) and (3.8),  we obtain 

 

Next, using the similar method as above, from (2.8),  we have 

                  （3.11） 

Moreover, we can easily obtain 
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                   （3.12） 

So, 

 

This completes the proof. 

It is easy to see that the long term mean of  is . It follows from (1.9) and (1.10), we have 

                 （3.13） 

Corollary 3.1. Assume , . The 

                                      （3.14） 

By the Young integral, we have 

                   （3.15） 

It follows from (2.5) and (3.5),  we obtain 

      （3.16） 

Using (2.5) and Young integral we have 

          (3.17) 

and 
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  (3.18) 

Combining\eqref sec3‐eq3.12 with\eqref sec3‐eq3.13, we have 

 （3.19） 

Finally, by (3.16) and (3.19) we can obtain the conclusion This completes the proof. 
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