Available online at https://www.cirworld.com
Journal of Advances in Mathematics 14(2) (2018) 7878-7879 https://doi.org/10.24297/jam.v14i2.7587

ANOTHER PROOF OF BEAL'S CONJECTURE

JAMES E. JOSEPH AND BHAMINI M. P. NAYAR

Abstract

Beal's Conjecture: The equation $z^{\xi}=x^{\mu}+y^{\nu}$ has no solution in relatively prime positive integers x, y, z with μ, ξ and ν odd primes at least 3 . A proof of this longstanding conjecture is given.

Beal's Conjecture: The equation $z^{\xi}=x^{\mu}+y^{\nu}$ has no solution in relatively prime positive integers x, y, z with ξ, μ and ν odd primes at least 3. A history of this problem can be found in [1].

Suppose $z^{\xi}=x^{\mu}+y^{\nu}$ is true for any relatively prime positive integers x, y, z and odd primes ξ, μ and ν with ξ, μ, ν at least 3 . When x, y and z are relatively prime, $\left(z^{\xi}\right),\left(x^{\xi}\right)$ and $\left(y^{\xi}\right)$ are also relatively prime. Then $\left(z^{\xi}\right)^{\xi}=\left(x^{\xi}\right)^{\mu}+\left(y^{\xi}\right)^{\nu}$. That is, suppose $\left(z^{\xi}\right)^{\xi}=\left(x^{\mu}\right)^{\xi}+$ $\left(y^{\nu}\right)^{\xi}$.

The Proof.

It is clear that if $\left(z^{\xi}\right)^{\xi}=\left(x^{\mu}\right)^{\xi}+\left(y^{\nu}\right)^{\xi}$, then either x^{μ} or y^{ν} or z^{ξ} is divisible by 2 . Suppose z^{ξ} is divisible by 2 . Then x^{μ} and y^{ν} are odd.
Since $\left(z^{\xi}\right)^{\xi}=\left(x^{\mu}\right)^{\xi}+\left(y^{\nu}\right)^{\xi},\left(z^{\xi}\right)^{\xi}$ is $2^{m \xi}$ times an odd integer, where m is an integer, and $\left(x^{\mu}\right)^{\xi}+\left(y^{\nu}\right)^{\xi}=\left(x^{\mu}+y^{\nu}\right)\left(\sum_{k=0}^{\xi-1}\left(x^{\mu}\right)^{k}\left(y^{\nu}\right)^{\xi-1-k}\right)$, by prime factorization, $x^{\mu}+y^{\nu}$ is even. Hence,

$$
\begin{equation*}
x^{\mu}+y^{\nu}=2^{m \xi} . \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
x^{\mu}+y^{\nu}-z^{\xi} \equiv 0(\bmod 2) . \tag{2}
\end{equation*}
$$

So,

$$
\left(x^{\mu}+y^{\nu}-z^{\xi}\right)^{\xi} \equiv 0\left(\bmod 2^{\xi}\right) ;
$$

and

$$
\begin{equation*}
\left(x^{\mu}+y^{\nu}\right)^{\xi}-\left(z^{\xi}\right)^{\xi} \equiv 0\left(\bmod 2^{\xi}\right), \tag{3}
\end{equation*}
$$

Date: 8/4/2018.
2010 Mathematics Subject Classification. Primary 11Yxx.
Key words and phrases. Beal's Conjecture.
since, by expanding $\left(x^{\mu}+y^{\nu}-z^{\xi}\right)^{\xi}$ using binomial expansion,

$$
\left(x^{\mu}+y^{\nu}-z^{\xi}\right)^{\xi}-\left(\left(x^{\mu}+y^{\nu}\right)^{\xi}-\left(z^{\xi}\right)^{\xi}\right)=\sum_{k=1}^{\xi-1} C(\xi, k)\left(x^{\mu}+y^{\nu}\right)^{\xi-k}\left(-z^{\xi}\right)^{k}
$$

Hence, in view of equation (2) and (3),

$$
\begin{align*}
& \left(z^{\xi}\right)^{\xi}-\left(x^{\mu}\right)^{\xi}-\left(y^{\nu}\right)^{\xi}=\left(x^{\mu}+y^{\nu}\right)^{\xi}-\left(x^{\mu}\right)^{\xi}-\left(y^{\nu}\right)^{\xi} \\
& =\sum_{k=1}^{\xi-1} C(\xi, k)\left(x^{\mu}\right)^{\xi-k}\left(y^{\nu}\right)^{k} \equiv 0\left(\bmod 2^{\xi}\right) . \tag{4}
\end{align*}
$$

So, $y^{\nu} \equiv 0(\bmod 2)$ and $x^{\mu} \equiv 0(\bmod 2)$. That is, if z^{ξ} is even, z, x and y are even.

Now assume that x^{μ} is even and we have $\left(x^{\mu}\right)^{\xi}=\left(z^{\xi}\right)^{\xi}-\left(y^{\nu}\right)^{\xi}$. Since x^{μ} is even, z^{ξ} and y^{ν} are odd; $z^{\xi}-y^{\nu}=2^{n \xi}$ for some integer n and hence

$$
\begin{equation*}
z^{\xi}-y^{\nu}-x^{\mu} \equiv 0(\bmod 2) \tag{5}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left(z^{\xi}-y^{\nu}-x^{\xi}\right)^{\xi} \equiv 0\left(\bmod 2^{\xi}\right) . \tag{6}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left(z^{\xi}-y^{\nu}-x^{\mu}\right)^{\xi}-\left(\left(z^{\xi}-y^{\nu}\right)^{\xi}-\left(x^{\mu}\right)^{\xi}\right)=\sum_{k=1}^{\xi-1} C(\xi, k)\left(z^{\xi}-y^{\nu}\right)^{\xi-k}\left(-x^{\mu}\right)^{k} \equiv 0\left(\bmod 2^{\xi}\right) . \tag{7}
\end{equation*}
$$

So,

$$
\begin{equation*}
\left(z^{\xi}-y^{\nu}\right)^{\xi}-\left(x^{\mu}\right)^{\xi} \equiv 0\left(\bmod 2^{\xi}\right) . \tag{8}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
& \left(x^{\mu}\right)^{\xi}-\left(z^{\xi}\right)^{\xi}+\left(y^{\nu}\right)^{\xi}=\left(z^{\xi}-y^{\nu}\right)^{\xi}-\left(z^{\xi}\right)^{\xi}+\left(y^{\nu}\right)^{\xi} \\
& \left.\quad=\sum_{k=1}^{\xi-1} C(\xi, k)\left(z^{\xi}\right)^{\xi-k}\left(-y^{\nu}\right)\right)^{k} \equiv 0\left(\bmod 2^{\xi}\right)
\end{aligned}
$$

So, $z^{\xi} \equiv 0(\bmod 2)$; and $y^{\nu} \equiv 0(\bmod 2)$ and hence z and y are even.
The case when y^{ν} is even is similar to the case when x^{μ} is even. So, if either x or y or z is even then, all are even which leads to a contradiction of the equation. Hence Beal's Conjecture is proved.

REFERENCES

[1] https://www.bealconjecture.com/
Department of Mathematics, Howard University, Washington, DC 20059, USA

E-mail address: jjoseph@Howard.edu
Current address: 35 E Street NW \#709, Washington, DC 20001, USA
E-mail address: j122437@yahoo.com
Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

E-mail address: Bhamini.Nayar@morgan.edu

