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1- Introduction  

The nonlinear partial differential equations represent the modeling of many phenomena in various fields such 

as mathematics, physics, chemistry, engineering, biology, astronomy and fluids mechanics etc. The Zakharov–

Kuznetsov (ZK) equation is one of them, it appears in plasma physics [1]. This equation has attracted the 

attention of many researchers in the last years. They are trying to solve it by using different methods. For 

example, the extended tanh method (Wazwaz  in 2008 [2]), VIM (Molliq et al. in 2009 [3]), He’s homotopy 

perturbation method (Yildirim et al. in 2010 [4]), Lie group analysis (Khalique et al. in 2011 [5]), the improved 

(G’/G)-expansion method (Naher et al. in 2012 [6]), traveling wave technique (Arshad et al. in 2016[7] and Yuan 

et al. in 2013 [8]), extended direct algebraic method (Seadawyin 2014 [9]), fractional sub-equation method 

(Saha et al. in 2015 [10]), homotopy perturbation method (Jamshad et al. in 2017 [11]), and solitary wave 

(Zhongzhou  et al. in 2018 [12]). In this article, we study two-dimensional Zakharov–Kuznetsov equation: 

𝑢𝑡 + 𝑝1(𝑢𝑞1)𝑥 + 𝑝2(𝑢𝑞2)𝑥𝑥𝑥 + 𝑝3(𝑢𝑞3)𝑦𝑦𝑥 = 0,        (1.1) 

where 𝑢 = 𝑢(𝑥, 𝑦, 𝑡), { 𝑝1, 𝑝2, 𝑝3 } are arbitrary constants and { 𝑞1, 𝑞2, 𝑞3 } are integers. This equation governs 

the behavior of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and hot isothermal 

electrons in the presence of a uniform magnetic field [13, 14]. The main aim of this work is to find analytical 

approximate solutions to equation (1.1) by using a new simulation scheme that is considered as extending and 

developing to that in [15]. This scheme is based on the Taylor series, it is efficient to solve linear and nonlinear 

equations. Also, our survey reveals that no attempt has ever been made to study the current model by using 

this technique. These reasons stimulate us to employ it to solve nonlinear intricate problem such as the two-

dimensional Zakharov–Kuznetsov equation. The obtained results are perfect, have small absolute errors and 

the best compared with VIM and HAM. 

This paper is organized as follows: Generating a simulation scheme in section 2, two problems are tested in 

section 3, in section 4 the convergence analysis is presented, discussion of results is reported in section 5. 

Finally, the conclusions are recorded in section 6. 

2- Generating a simulation scheme 

In this section, the basic ideas for constructing a new simulation scheme will be discussed. 

Let’s consider the initial value problem: 

𝑢𝑡(𝑥, 𝑦, 𝑡) = 𝐹[𝑢] + 𝑔(𝑥, 𝑦),          (2.1) 

with initial condition 𝑢(𝑥, 𝑦, 𝑡0),          

where 𝐹[𝑢] is the linear and nonlinear operator and 𝑔(𝑥, 𝑦) is the known function.     

By using the integral for the two sides of equation (2.1) from 𝑡0 to 𝑡, we obtain 

𝑢(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡0) + 𝑔(𝑥, 𝑦)𝛥𝑡 + ∫ 𝐹[𝑢]
𝑡

𝑡0
𝑑𝑡,        (2.2) 

where 𝛥𝑡 = 𝑡 − 𝑡0, and 𝐹[𝑢] can be expressed by the expand Taylors' series about 𝑡0 as; 

𝐹[𝑢] = [𝐹[𝑢]]
𝑡0

+ [𝐹′[𝑢]]
𝑡0

𝛥𝑡

1!
+ [𝐹′′[𝑢]]

𝑡0

(𝛥𝑡)2

2!
+ [𝐹′′′[𝑢]]

𝑡0

(𝛥𝑡)3

3!
+ ⋯ + [𝐹(𝑛)[𝑢]]

𝑡0

(𝛥𝑡)𝑛

𝑛!
+ ⋯,   (2.3) 

where [𝐹[𝑢]]
𝑡0

= 𝐹[𝑢]|𝑡=𝑡0
, [𝐹′[𝑢]]

𝑡0
=

𝜕𝐹[𝑢]

𝜕𝑡
|

𝑡=𝑡0

, [𝐹′′[𝑢]]
𝑡0

=
𝜕2𝐹[𝑢]

𝜕𝑡2 |
𝑡=𝑡0

, …, [𝐹(𝑛)[𝑢]]
𝑡0

=
𝜕𝑛𝐹[𝑢]

𝜕𝑡𝑛 |
𝑡=𝑡0
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Substituting equation (2.3) into equation (2.2), and integrating resulting equation to obtain the series solution 

as; 

𝑢(𝑥, 𝑦, 𝑡) = 𝑎0 + 𝑎1 𝛥𝑡 + 𝑎2
(𝛥𝑡)2

2!
+ 𝑎3

(𝛥𝑡)3

3!
+ ⋯ + 𝑎𝑛

(𝛥𝑡)𝑛

𝑛!
+ ⋯,      (2.4) 

where 𝑎0 = 𝑢(𝑥, 𝑦, 𝑡0), 𝑎1 = 𝑔(𝑥, 𝑦) + [𝐹[𝑢]]
𝑡0

, 𝑎2 = [𝐹′[𝑢]]
𝑡0

, 𝑎3 = [𝐹′′[𝑢]]
𝑡0

, ..., 𝑎𝑛 = [𝐹(𝑛−1)[𝑢]]
𝑡0

.  (2.5) 

Here we used the chain rule to compute the derivatives of 𝐹[𝑢] 

𝐹′[𝑢] = ∑ ∑ 𝐹𝑢
𝑥𝑖−𝑗𝑦𝑗

[𝑢]𝑖
𝑗=0

𝑛
𝑖=0 𝑢𝑥𝑖−𝑗𝑦𝑗𝑡 ,         (2.6) 

𝐹′′[𝑢] = ∑ ∑ (𝐹𝑢
𝑥𝑖−𝑗𝑦𝑗

[𝑢]𝑢𝑥𝑖−𝑗𝑦𝑗𝑡𝑡 + ∑ ∑ 𝐹(𝑢
𝑥𝑖−𝑗𝑦𝑗) ,(𝑢

𝑥𝑘−𝑟𝑦𝑟)[𝑢]𝑘
𝑟=0 𝑢𝑥𝑖−𝑗𝑦𝑗  𝑢𝑥𝑘−𝑟𝑦𝑟𝑡

𝑛
𝑘=0 )𝑖

𝑗
𝑛
𝑖=0 ,      (2.7) 

      ⋮  

where 𝑛 is the highest derivative of 𝑢. 

The series solution (2.4) at an initial time (𝑡0 = 0) is 

  𝑢(𝑥, 𝑦, 𝑡)  = 𝑎0 + 𝑎1𝑡 + 𝑎2
𝑡2

2!
+ 𝑎3

𝑡3

3!
+ ⋯ + 𝑎𝑛

𝑡𝑛

𝑛!
+ ⋯ .                                                (2.8) 

3- Test Problems  

Example 1. [16] Consider the following equation 

𝑢𝑡 + (𝑢2)𝑥 +
1

8
(𝑢2)𝑥𝑥𝑥 +

1

8
(𝑢2)𝑦𝑦𝑥 = 0         (3.1) 

with initial condition 𝑢(𝑥, 𝑦, 0) =
4

3
𝑘 𝑠𝑖𝑛ℎ2(𝑥 + 𝑦). The exact solution for this problem is  

𝑢(𝑥, 𝑦, 𝑡) =
4

3
𝑘 𝑠𝑖𝑛ℎ2(𝑥 + 𝑦 − 𝑘 𝑡) , compare with equation (2.1), we have 

𝑔(𝑥, 𝑦) = 0,            (3.2) 

𝐹[𝑢] = −(𝑢2)𝑥 −
1

8
(𝑢2)𝑥𝑥𝑥 −

1

8
(𝑢2)𝑦𝑦𝑥 ,         (3.3) 

we note that the highest derivative of 𝑢 is 𝑛 = 3 and 𝑡0 = 0, then according to (2.5), we get 

𝑎0 = 𝑢(𝑥, 𝑦, 0) =
4

3
𝑘 𝑠𝑖𝑛ℎ2(𝑥 + 𝑦) ,         (3.4) 

𝑎1 = [𝐹[𝑢]]
0

= −((𝑎0)2)𝑥 −
1

8
((𝑎0)2)𝑥𝑥𝑥 −

1

8
((𝑎0)2)𝑦𝑦𝑥  

     = −
32

9
𝑘2 𝑠𝑖𝑛ℎ(𝑥 + 𝑦) 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) [10 𝑐𝑜𝑠ℎ2(𝑥 + 𝑦) − 7] ,                 (3.5) 

𝑎2 = [𝐹′[𝑢]]
0

= ∑ ∑ 𝐹𝑢
𝑥𝑖−𝑗𝑦𝑗

[𝑎0]𝑖
𝑗=0

3
𝑖=0 (𝑎1)𝑥𝑖−𝑗𝑦𝑗  

     =
128

27
𝑘3[1200 𝑐𝑜𝑠ℎ6(𝑥 + 𝑦) − 2080 𝑐𝑜𝑠ℎ4(𝑥 + 𝑦) + 968 𝑐𝑜𝑠ℎ2(𝑥 + 𝑦) − 79] ,    (3.6) 

𝑎3 = [𝐹′′[𝑢]]
0

= ∑ ∑ (𝐹𝑢
𝑥𝑖−𝑗𝑦𝑗

[𝑎0](𝑎2)𝑥𝑖−𝑗𝑦𝑗 + ∑ ∑ 𝐹(𝑢
𝑥𝑖−𝑗𝑦𝑗),(𝑢

𝑥𝑘−𝑟𝑦𝑟)[𝑎0]𝑘
𝑟=0  (𝑎1)𝑥𝑖−𝑗𝑦𝑗  (𝑎1)𝑥𝑘−𝑟𝑦𝑟

3
𝑘=0 )𝑖

𝑗
3
𝑖=0   



 

7915 

     = −
8192

81
𝑘4 𝑠𝑖𝑛ℎ(𝑥 + 𝑦) 𝑐𝑜𝑠ℎ(𝑥 + 𝑦) [23800 𝑐𝑜𝑠ℎ6(𝑥 + 𝑦) −42900 𝑐𝑜𝑠ℎ4(𝑥 + 𝑦) 

         +22665 𝑐𝑜𝑠ℎ2(𝑥 + 𝑦) − 3142],                      (3.7) 

from equation (2.8) we get the analytical approximate solution     𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑎𝑖
(𝑡)𝑖

(𝑖)!

3
𝑖=0 . 

Example 2. [16] Consider the following equation 

𝑢𝑡 + (𝑢3)𝑥 + 2(𝑢3)𝑥𝑥𝑥 + 2(𝑢3)𝑦𝑦𝑥 = 0 ,         (3.8) 

with initial condition 𝑢(𝑥, 𝑦, 0) =
3

2
𝑘 𝑠𝑖𝑛ℎ (

1

6
(𝑥 + 𝑦)). The exact solution for this problem is  

𝑢(𝑥, 𝑦, 𝑡) =
3

2
𝑘 𝑠𝑖𝑛ℎ (

1

6
(𝑥 + 𝑦 − 𝑘 𝑡)), compare with equation (2.1), we have 

𝑔(𝑥, 𝑦) = 0 ,            (3.9) 

𝐹[𝑢] = −(𝑢3)𝑥 − 2(𝑢3)𝑥𝑥𝑥 − 2(𝑢3)𝑦𝑦𝑥 ,                   (3.10) 

we note that the highest derivative of 𝑢 is 𝑛 = 3 and 𝑡0 = 0, then according to (2.5), we get 

𝑎0 = 𝑢(𝑥, 𝑦, 0) =
3

2
𝑘 𝑠𝑖𝑛ℎ (

1

6
(𝑥 + 𝑦)) ,                   (3.11) 

𝑎1 = [𝐹[𝑢]]
0

= −((𝑎0)3)𝑥 − 2((𝑎0)3)𝑥𝑥𝑥 − 2((𝑎0)3)𝑦𝑦𝑥  

     = −
27

8
𝑘3 𝑐𝑜𝑠ℎ3 (

1

6
(𝑥 + 𝑦)) + 3 𝑘3 𝑐𝑜𝑠ℎ (

1

6
(𝑥 + 𝑦)) ,                 (3.12) 

𝑎2 = [𝐹′[𝑢]]
0

= ∑ ∑ 𝐹𝑢
𝑥𝑖−𝑗𝑦𝑗

[𝑎0]𝑖
𝑗=0

3
𝑖=0 (𝑎1)𝑥𝑖−𝑗𝑦𝑗  

     =
3

32
𝑘5𝑠𝑖𝑛ℎ (

1

6
(𝑥 + 𝑦)) [765 𝑐𝑜𝑠ℎ4 (

1

6
(𝑥 + 𝑦)) − 729 𝑐𝑜𝑠ℎ2 (

1

6
(𝑥 + 𝑦)) + 91] ,              (3.13) 

𝑎3 = [𝐹′′[𝑢]]
0

= ∑ ∑ (𝐹𝑢
𝑥𝑖−𝑗𝑦𝑗

[𝑎0](𝑎2)𝑥𝑖−𝑗𝑦𝑗 + ∑ ∑ 𝐹(𝑢
𝑥𝑖−𝑗𝑦𝑗),(𝑢

𝑥𝑘−𝑟𝑦𝑟)[𝑎0]𝑘
𝑟=0  (𝑎1)𝑥𝑖−𝑗𝑦𝑗  (𝑎1)𝑥𝑘−𝑟𝑦𝑟

3
𝑘=0 )𝑖

𝑗
3
𝑖=0   

     = −
3

128
𝑘7𝑐𝑜𝑠ℎ (

1

6
(𝑥 + 𝑦)) [188181𝑐𝑜𝑠ℎ6 (

1

6
(𝑥 + 𝑦)) − 382293𝑐𝑜𝑠ℎ4 (

1

6
(𝑥 + 𝑦)) 

         +234468𝑐𝑜𝑠ℎ2 (
1

6
(𝑥 + 𝑦)) − 39851],                  (3.14) 

from equation (2.8) we get the analytical approximate solution 𝑢(𝑥, 𝑦, 𝑡) = ∑ 𝑎𝑖
(𝑡)𝑖

(𝑖)!

3
𝑖=0  . 
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Table 1: Comparison of the absolute errors between VIM [17] and present study for example 1 with 𝑡 = 1, 𝑘 =

0.001. 

Method  
𝑦 

0.02 0.04 0.06 0.08 0.1 

Present study 

VIM 

𝑥 

0.02 
3.01E-7 

7.90E-6 

4.66E-7 

1.19E-5 

6.35E-7 

1.59E-5 

8.12E-7 

2.00E-5 

9.98E-7 

2.41E-5 

Present study 

VIM 
0.04 

4.66E-7 

1.19E-6 

6.35E-7 

1.59E-5 

8.12E-7 

2.00E-5 

9.98E-7 

2.41E-5 

1.20E-6 

2.84E-5 

Present study 

VIM 
0.06 

6.35E-7 

1.59E-5 

8.12E-7 

2.00E-5 

9.98E-7 

2.41E-5 

1.20E-6 

2.84E-5 

1.41E-6 

3.27E-5 

Present study 

VIM 
0.08 

8.12E-7 

2.00E-5 

9.98E-7 

2.41E-5 

1.20E-6 

2.84E-5 

1.41E-6 

3.27E-5 

1.63E-6 

3.72E-5 

Present study 

VIM 
0.1 

9.98E-7 

2.41E-5 

1.20E-6 

2.84E-5 

1.41E-6 

3.27E-5 

1.63E-6 

3.72E-5 

1.88E-6 

4.18E-5 

 

 

Table 2: Comparison of the absolute errors between HAM [18] and present study for example 2 with 𝑡 = 1, 

𝑘 = 0.001. 

Method  
𝑦 

1 3 5 7 9 

Present study 

HAM 

𝑥 

1 
2.63E-7 

2.64E-7 

3.05E-7 

3.08E-7 

3.78E-7 

3.86E-7 

4.85E-7 

5.07E-7 

6.24E-7 

6.85E-7 

Present study 

HAM 
3 

3.05E-7 

3.08E-7 

3.78E-7 

3.86E-7 

4.85E-7 

5.07E-7 

6.24E-7 

6.85E-7 

7.72E-7 

9.40E-7 

Present study 

HAM 
5 

3.78E-7 

3.86E-7 

4.85E-7 

5.07E-7 

6.24E-7 

6.85E-7 

7.72E-7 

9.40E-7 

8.41E-7 

1.30E-6 

Present study 

HAM 
7 

4.85E-7 

5.07E-7 

6.24E-7 

6.85E-7 

7.72E-7 

9.40E-7 

8.41E-7 

1.30E-6 

5.54E-7 

1.80E-6 

Present study 

HAM 
 9 

6.24E-7 

6.85E-7 

7.72E-7 

9.40E-7 

8.41E-7 

1.30E-6 

5.54E-7 

1.80E-6 

8.95E-7 

2.50E-6 

 

(a) (b) (c) 

Fig. 1: (a) Exact solution, (b) Approximate solution, (c) Absolute errors for 𝑡=1 with 𝑘 = 0.001. 
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4- Discussion 

In this article, we introduced two test problems for confirming the validity of the new proposed approach. Figs. 

(1-2) show the exact solution, approximate solution and absolute errors at 𝑡 = 1, 𝑘 = 0.001, and the 

comparison between analytical approximate solution obtain by a new approach and VIM [17] and HAM [18] 

which are given in Tables (1-2). The measurement of errors for the unknown variable, which are shown in 

Tables (1-2), ensure the ability of the suggested new approach and its accuracy in finding the analytical 

approximate solutions of nonlinear two-dimensional Zakharov–Kuznetsov equation. From our computations 

that are explained in the figures and tables, we noted that the analytical approximate solution obtained by a 

new approach is identical with exact solutions. Moreover, the absolute errors of the proposed approach are 

smaller than other standard methods (VIM and HAM). In addition, theoretical proofs for the analysis of 

convergence stand by the computation results. From these results, we can say that, the power series 

simulation scheme is an effective and good approach to find the solutions of nonlinear two-dimensional 

Zakharov–Kuznetsov equation compared to the other methods (VIM, HAM). 

5- Convergence analysis  

Consider the partial differential equation (1.1) in the following form: 

𝑢(𝑥, 𝑦, 𝑡) = 𝐺(𝑢(𝑥, 𝑦, 𝑡)),            (4.1) 

where 𝐺 is a nonlinear operator. The solution by the present approach is equivalent to the following sequence: 

𝑆𝑛 = ∑ 𝑢𝑖
𝑛
𝑖=0 = ∑ 𝑎𝑖

(𝛥𝑡)𝑖

(𝑖)!

𝑛
𝑖=0  .                                                        (4.2) 

Theorem 4.1 ( Convergence of Zakharov–Kuznetsov equation ) 

Let 𝐺 be an operator from a Hilbert space 𝐻 into 𝐻 and 𝑢 be the exact solution of equation (4.1). The 

approximate solution ∑ 𝑢𝑖
∞
𝑖=0 = ∑ 𝑎𝑖

(𝛥𝑡)𝑖

(𝑖)!

∞
𝑖=0  is Convergence to exact solution 𝑢 

when ∃ 0 ≤ 𝛼 < 1, ‖𝑢𝑖+1‖ ≤  𝛼 ‖𝑢𝑖‖  ∀ 𝑖 ∈ ℕ ∪ {0}. 

Proof: We want to show that {𝑆𝑛}𝑛=0
∞  is a Cauchy sequence, 

‖𝑆𝑛+1 − 𝑆𝑛‖ = ‖𝑢𝑛+1‖ ≤ 𝛼‖𝑢𝑛‖ ≤ 𝛼2‖𝑢𝑛−1‖ ≤ ⋯ ≤  𝛼𝑛‖𝑢1‖ ≤ 𝛼𝑛+1‖𝑢0‖.     (4.3) 

(a) (b) (c) 

Fig. 2: (a) Exact solution, (b) Approximate solution, (c) Absolute errors for 𝑡=1 with 𝑘 = 0.001. 
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Now for 𝑛, 𝑚 ∈ ℕ , 𝑛 ≥ 𝑚 

‖𝑆𝑛 − 𝑆𝑚‖ = ‖(𝑆𝑛 − 𝑆𝑛−1) + (𝑆𝑛−1 − 𝑆𝑛−2) + ⋯ + (𝑆𝑚+1 − 𝑆𝑚)‖  

                   ≤ ‖𝑆𝑛 − 𝑆𝑛−1‖ + ‖𝑆𝑛−1 − 𝑆𝑛−2‖ + ⋯ + ‖𝑆𝑚+1 − 𝑆𝑚‖  

                   ≤ 𝛼𝑛‖𝑢0‖ + 𝛼𝑛−1‖𝑢0‖ + ⋯ + 𝛼𝑚+1‖𝑢0‖  

                   ≤ (𝛼𝑚+1 + 𝛼𝑚+2 + ⋯ + 𝛼𝑛)‖𝑢0‖ = 𝛼𝑚+1 1−𝛼𝑛−𝑚

1−𝛼
‖𝑢0‖      (4.4) 

Hence, 𝑙𝑖𝑚
𝑛,𝑚→∞

‖𝑆𝑛 − 𝑆𝑚‖ = 0 that is mean {𝑆𝑛}𝑛=0
∞  is a Cauchy sequence in the Hilbert 

space 𝐻 then there exist 𝑆 ∈ 𝐻 such that 𝑙𝑖𝑚
𝑛→∞

𝑆𝑛 = 𝑆, where 𝑆 = 𝑢.    

Definition 4.1 For every 𝑛 ∈ ℕ ∪ {0}, we define 

𝛼𝑛= {

‖𝑢𝑛+1‖

‖𝑢𝑛‖
 , ‖𝑢𝑛‖ ≠ 0

0 ,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (4.5) 

Corollary 4.1 From theorem 4.1 ∑ 𝑢𝑖
∞
𝑖=0 = ∑ 𝑎𝑖

(𝛥𝑡)𝑖

(𝑖)!

∞
𝑖=0  convergence to exact solution 𝑢 when  

0 ≤ 𝛼𝑖 < 1, 𝑖 = 0,1,2, …. 

Now, to illustrate the convergence of analytical approximate solutions for the two test problems we applied 

Corollary 4.1 as follows; 

In the first example where(𝑥, 𝑦) ∈ (−0.1,0.1)2, 𝑡 = 1 and 𝑘 = 0.001, for the third order solution, we get 

𝛼0 =
‖𝑢1‖

‖𝑢0‖
= 0.06693303650 < 1, 

𝛼1 =
‖𝑢2‖

‖𝑢1‖
= 0.03172301517 < 1, 

𝛼2 =
‖𝑢3‖

‖𝑢2‖
= 0.02712277864 < 1, 

In the second example where (𝑥, 𝑦) ∈ (−10,10)2, 𝑡 = 1 and 𝑘 = 0.001 for the second order solution, we get 

𝛼0 =
‖𝑢1‖

‖𝑢0‖
= 0.00151646710 < 1,  

𝛼1 =
‖𝑢2‖

‖𝑢1‖
= 0.00125230375 < 1,  

hence, the convergence of approximate solutions are valid. 
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6- Conclusions 

In this paper, we proposed a new power series simulation scheme to solve nonlinear two-dimensional 

Zakharov–Kuznetsov equations. Taylor's series assisted us in the derivation of this scheme successfully. In fact, 

it seems that the proposed scheme can be considered as a new version of the decomposition method. The 

results show that a new scheme is an efficient methodology with good convergence and accuracy to find 

analytical approximate solutions of two test unsteady state problems. Application of the proposed approach 

gives a simple powerful tool to find analytic approximate solutions for the consideration problems. Finally, 

from analysis of results, we can conclude that the tests confirm the validity of a new scheme to handle current 

nonlinear problems and give the potential to employ it for more complicated problems as the future works. 
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