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Abstract 

There are two aims of this paper, firstly, we present an improvement of the classical Simpson third-order 

method for finding zeros a nonlinear equation and secondly, we introduce a new formula for approximating 

second-order derivative. The new Simpson-type method is shown to converge of the order four.  Per iteration 

the new method requires same amount of evaluations of the function and therefore the new method has an 

efficiency index better than the classical Simpson method.  We examine the effectiveness of the new fourth-

order Simpson-type method by approximating the simple root of a given nonlinear equation. Numerical 

comparisons are made with classical Simpson method to show the performance of the presented method. 
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1 Introduction 

In this paper, we present a new fourth-order iterative method to find a simple root of the nonlinear equation. 

It is well known that the techniques to solve nonlinear equations have many applications in science and 

engineering.  We shall utilise two well-known techniques, namely the classical Simpson method and the 

classical Newton method, for their simplicity with convergence order of three and two respectively [3,4,5]. The 

new Simpson-type method requires same amount of evaluations of the function as the classical Simpson 

method.  We shall prove that the new Simpson-type iterative method has a better efficiency index than the 

classical Simpson method [1,2,4-7].  The prime motive for the development of the new Simpson-type method 

was to increase the order of convergence of classical Simpson method.  Furthermore, we introduce a new 

formula for approximating the second-order derivative of a function. 

2 Development of the method and analysis of convergence 

Let ( )f x  be a real function with a simple root   and let  n n
x


 be a sequence of real numbers that 

converge towards .   The order of convergence p is given by 

( )
1lim 0,n
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n
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+
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−
= 
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where p +  and   is the asymptotic error constant.  Also, let k ke x = −  be the error in the kth iteration, 

then the relation 

( )1

1 ,p p

k k ke e e +

+ = +                (2) 

is the error equation. If the error equation exists, then p is the order of convergence of the iterative method 

[3,7,8,10]. 

Furthermore, the efficiency of the method is measured by the concept of efficiency index, given by 

 ( ), ,rEI r p p=                 (3) 

where r is the number of function evaluations of the method and p is the order of the convergence of the 

method [7].  In order to approximate the order of convergence of the method we use the following formula. 

Suppose that 1,n nx x−  and 1nx +   are three successive iterations closer to the root      of (1).  Then the 

computational order of convergence may be approximated by  
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where ( ) ( ) ,i i if x f x =   [9].  

In order to construct the new fourth-order iterative method, we state the essentials of the established third-

order Simpson method.   

2.1 The Classical Simpson third-order method 

Since this method is well established, we shall state the essential expressions used in order to calculate the 

root of the given nonlinear equation.  Hence the Simpson third-order method is given as 



  

 

7633 

( )

( ) ( ) ( )
1

6
,

4

n

n n

n n n

f x
x x

f x f z f y
+ = −

  + +
         

(5) 

where 

 
( )

( )
,

n

n

n

f x
u

f x
=


                   (6) 

,n n ny x u= −                              (7) 

12 ,n n nz x u−= −                    (8) 

0x  is the initial approximation and provided that the denominator of (5) is not equal to zero.  

2.2 The Simpson-type fourth-order method 

In this section we present a new scheme to find simple root of a nonlinear equation.  In order to increase the 

order of convergence of the classical Simpson method, we shall introduce a new factor in (5). Hence, the 

general formula of the new fourth-order Simpson method is given by 
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Theorem 1  

Assume that the function :f I →   for an open interval I   has a simple root I .  Let ( )f x  be 

sufficiently smooth in the interval I, then the order of convergence of the new method defined by (9) is four. 

Proof     

Let    be a simple root of ( )f x , i.e. ( ) 0f  =  and ( ) 0f   , and the error is expressed as  

e x = − .             (16) 

Using Taylor expansion, we have 

( ) ( ) ( )1 2( ) 2n n nf x f f e f e  − = + + + .         (17) 

Taking ( ) 0f  =  and simplifying, expression (17) becomes 

( ) ( ) 2 3

2 3n n n nf x f e c e c e  = + + +  .         (18) 

where 
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( ) ( )!
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for 2,3,4,...k =  .                         (19) 

Furthermore, we have 

( ) ( ) 2

2 31 2 3n n nf x f c e c e   = + + +  ,        (20) 

( ) ( ) 2 32 6n nf x f c c e   = + +  .          (21) 

Dividing (18) by (20), we get 

( )

( )
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and hence, we have 
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The expansion of ( )nf y  about   is given as 

( ) ( ) ( )2 2 3

2 2 32n n nf y f c e c c e   = − − −
 

         (24) 

Since from (10) we have 
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Taylor expansion of  ( )nf z  about    is    
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Furthermore, expansion of ,n nv w  is given by   
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Approximations of second-order derivative are given as 
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The denominator of (5) is given as 

( ) ( ) ( ) ( )2 2

2 2 34 6 6 6n n n n nf x f z f y c e c c e  + + = + + + +              (33) 

Dividing the numerator by denominator of (5), we get 

  ( )2 3 3 4

2 2 2 33n n ne c e c c c e− + − +

          

(34) 

It is well established that the error equation of (5) is 

2 3

1 2n ne c e+ = +             (35) 

The improvement factors introduce in (9) are  
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Substituting appropriate expressions in (9) and we shall obtain the error equations for the new iterative 

methods defined by (9).  Using the four improvement factor we have obtained four different fourth-order 

methods, hence the error equation for these methods are given as  

( )1 3 4 5

1 2 2 3

3
4 ,

2
n n ne c c c e e+

  
 = + +    

  
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( )2 3 4 5
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 = − +    

  
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( ) ( )3 3 4 5

1 2 2 34n n ne c c c e e+
 = − +  ,           (42) 

( ) ( )4 3 4 5

1 2 2 34 3n n ne c c c e e+
 = − +  ,          (43) 

respectively. The error equation (40)-(43) establishes the fourth-order convergence of the new Simpson-type 

method defined by (9).           

3 Numerical examples 

The new fourth-order methods given by (9) is employed to solve nonlinear equations with simple root. To 

demonstrate the performance of the new Simpson-type fourth-order method, ten particular nonlinear 

equations are used.  The estimates are given of the approximate solutions produced by the methods 

considered and list the errors obtained by each of the methods.  To determine the efficiency index of the new 

method, formula (3) will be used.  Hence, the efficiency index of the new iterative method given by (9) is 
4 4 1.4142.  the efficiency index of the classical Simpson third-order method is given by (5) is 4 3 1.3161.  

It is shown that the efficiency index of the new fourth-order method is much better than the classical Simpson 

third-order method.  Ten particular test functions are displayed in table 1. The difference between the simple 

root 
 
and the approximation nx  for test functions with initial guess 0x are displayed in table 2. In fact, nx  is 

calculated by using the same total number of function evaluations for all methods.  Furthermore, we display 

the computational order of convergence approximations in table 3. From the tables we observe that the COC 

perfectly coincides with the theoretical result.  

Table 1 Test functions and their simple roots. 

Functions Parameter Simple Root Initial guess 

( ) ( ) ( ) ( )2

1 ln 1 exp sinf x x x x= + +  4m = −  0 =  
0 0.1x =  
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( ) ( )
1

2

2 1 1f x x
−

= − −  
0m =  1.4142... =  

0 1.25x =  

( ) ( )( ) ( )10

3 2 1 exp 1f x x x x x= − + + − −  2m = −  2 =  
0 0.25x =  

( ) ( ) ( )( ) ( )( )2

4 1 exp sin exp cos 1f x x x x x= + − −  12m =  0 =  
0 1.3x =  

( ) ( )
2 2

5 sin 1f x x x= − +  12m =  1.4044... =  
0 1x =  

( ) ( ) ( )1

6 exp 1 cos 2f x x x−= − −  6m = −  1.1878... =  
0 3x =  

( ) ( )2

7 ln 2 1f x x x x= + + − +  15m =  
4.1525... =  

0 0.75x =  

( ) 10 3

8 6 2 2f x x x x= − − +  32m = −  0.8954... =  
0 0.5x =  

( ) ( )
2 1

9 cos 2f x x x−= −  33m =  0.8570... =  
0 1.4x =  

( ) 15 4 2

10 4 25f x x x x= + − +  2m = −  1.2259... = −  
0 1.4x = −  

 

Table 2 Errors occurring in the estimates of the simple root of (40) by the methods described 

if  (5) (9):i=1 (9):i=2 (9):i=3 (9):i=4 

1f  0.114e-62 0.366e-157 0.119e-158 0.213e-158 0.320e-186 

2f  0.445e-32 0.270e-65 0.148e-79 0.272e-76 0.569e-94 

3f  0.203e-40 0.928e-91 0.387e-98 0.100e-96 0.981e-122 

4f  0.895e-69 0.173e-135 0.106e-231 0.104e-188 0.435e-244 

5f  0.342e-85 0.278e-209 0.108e-214 0.967e-214 0.860e-331 

6f  0.112e-64 0.125e-160 0.106e-167 0.213e-166 0.147e-277 

7f  0.968e-85 0.804e-247 0.893e-191 0.279e-196 0.492e-248 

8f  0.275e-41 0.790e-108 0.152e-85 0.152e-89 0.166e-111 

9f  0.981e-114 0.562e-233 0.292e-179 0.271e-195 0.821e-318 

10f  0.162e-15 0.717e-28 0.580e-33 0.649e-32 0.115e-75 

Table 3 Performance of COC 
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if  (5) (9):i=1 (9):i=2 (9):i=3 (9):i=4 

1f  3.0000 4.0000 4.0000 4.0000 4.0000 

2f  3.0001 4.0000 4.0000 4.0000 4.0000 

3f  3.0000 4.0000 4.0000 4.0000 4.0000 

4f  3.0000 4.0000 4.0000 4.0000 4.0000 

5f  3.0000 4.0000 4.0000 4.0000 4.0000 

6f  3.0000 4.0000 4.0000 4.0000 4.0000 

7f  3.0000 4.0000 4.0000 4.0000 4.0000 

8f  3.0000 4.0000 4.0000 4.0000 3.9828 

9f  3.0000 4.0000 4.0000 4.0000 4.0000 

10f  3.0052 4.0000 4.0000 4.0000 4.0000 

 

4 Conclusion 

In this paper, we have demonstrated the performance of the new iterative method, namely the Simpson-type 

fourth-order iterative method.  The prime motive of the development of the new fourth-order method was to 

establish a higher order of convergence method than the classical Simpson third-order iterative method. 

Furthermore, we have introduced a family for approximating the second-order derivative. Numerical 

comparisons are made to show the performance of the derived method.  We have examined the effectiveness 

of the new fourth-order iterative method by showing the accuracy of the simple root of a nonlinear equation.    

In addition, it should be noted that the new formula for approximating second-order derivative in the new 

method (9) is dependent on the value of m, therefore a particular choice m is very important.  Hence further 

study is needed to establish the optimal estimate of simple root. 
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