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ABSTRACT 

The Fisher and Kullback- Liebler information measures were calculated from the approximation of a binomial distribution 
by both the Poisson and the normal distributions and are applied to the approximation of a Poisson distribution by a 
normal distribution. In this paper the concept of relative loss in information due to approximating the distribution of a 
random variable 𝑋𝑛   by that of another distribution of  𝑌𝑛  is introduced, and this concept is used to determine the value of 

the sample size for which the relative loss in information measure is less than a given level 𝜖.  
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1. INTRODUCTION 

Many information measures are suggested in the literature [1], [2],[4],[7],[9],[10] and [11]. Among these measures are the 
Fisher information measure (1925) [5] 𝐼𝐹 𝜃  that was introduced to measure the amount of information in a random 

variable 𝑋. This measure is defined by: 

𝐼𝐹 𝜃 = −𝐸  
𝜕2 log 𝑔 𝑥; 𝜃   

𝜕𝜃2  , 

where,  𝑔 𝑥; 𝜃  ,𝜃 ∈ Ω is the probability density function  𝑝. 𝑑.𝑓 of the random variable. Kullback-Liebler(1956) [8] directed 

a divergence measure, which is defined as follows: 

  Let  𝑋 be a r.v with  𝑝. 𝑑. 𝑓  𝑓1 𝑥  under the hypothesis 𝐻1 or 𝑓2 𝑥  under the hypothesis 𝐻2. One of the main non-

parametric measures of information is the Kullback-Liebler directed divergence measure, which is given by:  

𝐼  𝑓1 , 𝑓2 = 𝐸𝑓1
[log 𝑓1 𝑋 𝑓2 𝑋   ]. 

   It is known that 𝐾𝑙 𝑓1: 𝑓2 ≥ 0 with equality holds iff  𝑓1(𝑥) = 𝑓2(𝑥)  almost surely. So, we select the sample size 𝑛 such 

that 𝐾𝑙 𝑓1: 𝑓2  is minimum [6].  

   We will study the information embedded in a random variable  𝑋𝑛   whose distribution for large 𝑛 is approximated by the 
distribution of  𝑌𝑛  . 

      The question which arises here is that how large 𝑛 should be for this approximation to be acceptable? To answer this 

question, we follow [3] and [6]. Let 𝐼 be an information measure, we select the sample size 𝑛 such that the relative loss in 

the Fisher and Kullback-Liebler information measures is less than some given small number 𝜖 ; 0 < 𝜖 < 1. 

2. APPROXIMATIONS BY FISHER INFORMATION MEASURES 

    We measure information by using Fisher  information measure : 

2.1 Poisson Approximation to Binomial Distribution 

Let 𝑌1 , … , 𝑌𝑛  be  i.i.d from 𝐵(1, 𝜃),  𝑋 =  𝑌𝑖
𝑛
𝑖=1 ∶ 𝐵 𝑛, 𝜃  . The  p.d.f of 𝑋 is   

                                   𝑓 𝑥, 𝜃 =  
 𝑛
𝑥
 𝜃𝑥 1 − 𝜃 𝑛−𝑥         𝑖𝑓    𝑥 = 0,1,2,3,… , 𝑛

0                                    𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                  
                                                                      (1) 

Note that: 

𝑙𝑜𝑔𝑓 𝑥; 𝜃 = 𝑙𝑜𝑔 𝑛! − 𝑙𝑜𝑔 𝑛 − 𝑥 ! − 𝑙𝑜𝑔 𝑥! + 𝑥𝑙𝑜𝑔𝜃 +  𝑛 − 𝑥 𝑙𝑜𝑔 1 − 𝜃  

From which, 

𝜕2 𝑙𝑜𝑔𝑓 𝑥, 𝜃  

𝜕𝜃2
= −𝑥 𝜃2 −  𝑛 − 𝑥  1 − 𝜃 2   

Hence the Fisher information in  𝑋 about 𝜃  is  

                                                 𝐼𝐵𝑖𝑛  𝜃 = −𝐸  
𝜕2 𝑙𝑜𝑔𝑓  𝑥 ,𝜃  

𝜕𝜃2  = 𝑛 𝜃 + 𝑛  1 − 𝜃                                                                          (2) 

Let  𝑋  be approximated by  𝑌: 𝑃 𝑛𝜃  with a 𝑝. 𝑑.𝑓 

                                  𝑔 𝑦; 𝜃 =  𝑒
−𝑛𝜃  𝑛𝜃 𝑦 𝑦!           𝑖𝑓       𝑦 = 0,1,2,…

0                                   𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                        (3) 

Note that:  log(𝑔 𝑦; 𝜃 ) = −𝑛𝜃 + 𝑦𝑙𝑜𝑔 𝑛𝜃 − 𝑙𝑜𝑔 𝑦!  

From which, 

𝜕2 log 𝑔 𝑦; 𝜃   

𝜕𝜃2 = −
𝑦

𝜃2 

Hence the Fisher information in 𝑌 about  is 

                     𝐼𝑃 𝜃 = −𝐸  
𝜕2 log 𝑔 𝑦 ;𝜃   

𝜕𝜃2  = 𝑛 𝜃                                                                                                     (4) 

   So, the loss in the Fisher information due to approximating 𝑋 by 𝑌 is  

𝐼𝐵𝑖𝑛  𝜃 − 𝐼𝑃 𝜃 = 𝑛  1 − 𝜃  .  

It is strange that this loss increases with the sample size. Moreover, the relative loss in the Fisher information measure 
due to this approximation is  

𝑳 =  (𝐼𝐵𝑖𝑛  𝜃 − 𝐼𝑃 𝜃 ) 𝐼𝐵𝑖𝑛  𝜃   =  (𝑛 𝜃 + 𝑛  1 − 𝜃 −  𝑛 𝜃 )/ (𝑛 𝜃 + 𝑛  1 − 𝜃 )   = 𝜃 
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which does not depend on sample size 𝑛. Therefore, the relative loss in the Fisher information measure cannot be used to 

specify the sample size 𝑛 for which the above approximation is suitable. 

2.2 Normal Approximation to the Poisson Distribution 

Let 𝑌1 , … , 𝑌𝑛  be i.i.d from 𝑃(𝜃) then  𝑋 =  𝑌𝑖
𝑛
𝑖=1 ∶ 𝑃(𝑛𝜃) with a 𝑝. 𝑑. 𝑓 as in Equation (3). The Fisher information of  𝑋 is 

given by Equation (4), namely,  

𝐼𝑃 𝜃 = 𝑛 𝜃 . 

Let X be approximated by  𝑌: 𝑁(𝑛𝜃, 𝑛𝜃) with a 𝑝. 𝑑. 𝑓   

                                        𝑔 𝑦, 𝜃 =  1  2𝜋𝑛𝜃  𝑒𝑥𝑝 −  𝑦 − 𝑛𝜃 2 2𝑛𝜃     , −∞ < 𝑦 < ∞  𝑎𝑛𝑑  0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒                           (5) 

Note  that: 𝑙𝑜𝑔 𝑔 𝑦, 𝜃  = − 1 2  𝑙𝑜𝑔 2𝑛𝜋 −  1 2  𝑙𝑜𝑔 𝜃 −  𝑦 − 𝑛𝜃 2 2𝑛𝜃  

From which, 

𝜕2 log 𝑔 𝑦, 𝜃 

𝜕𝜃2 = 1 2𝜃2 − 𝑦2 𝑛𝜃3  

Hence the Fisher information in 𝑌 about 𝜃 is 

𝐼𝑁 𝜃 = − 1 2𝜃2 − 𝐸 𝑦2 𝑛𝜃3  

  But  𝐸𝑌2 = 𝑣𝑎𝑟 𝑌 +  𝐸 𝑌  
2

= 𝑛𝜃 + 𝑛2𝜃2 = 𝑛𝜃 1 + 𝑛𝜃  

Hence,   𝐼𝑁 𝜃 = − 1 2𝜃2 + 𝑛𝜃 1 + 𝑛𝜃 𝑛𝜃3  =  1 + 𝑛𝜃 𝜃2 − 1 2𝜃2 =  1 + 2𝑛𝜃 2𝜃2    

 Therefore, the relative loss in the Fisher information due to this approximation is    

𝐿 =  (𝐼𝑃 𝜃 − 𝐼𝑁 𝜃 ) 𝐼𝑃 𝜃   =   𝑛 𝜃 −   1 + 2𝑛𝜃 2𝜃2    𝑛 𝜃    = 1 2𝑛𝜃   

 For a given small positive real number 𝜀 the relative loss  𝐿 < 𝜀  implies that 

                                                                         1 2𝑛𝜃 < 𝜀                                                                                                               (6)   

2.3 Normal Approximation to the Binomial Distribution 

   Let  𝑋: 𝐵 𝑛,𝜃  with a 𝑝. 𝑑. 𝑓 as in Equation (1) .The Fisher information of  𝑋  is given by 𝐼𝐵𝑖𝑛  𝜃 = 𝑛 𝜃 + 𝑛  1 − 𝜃    as 

given in Equation (2) above. 

Let 𝑋 be approximated by 𝑌: 𝑁 𝑛𝜃, 𝑛𝜃 1 − 𝜃   with a 𝑝. 𝑑. 𝑓 

                                                   𝑔 𝑦, 𝜃 =  1  2𝜋𝑛𝜃 1 − 𝜃   exp −  𝑦 − 𝑛𝜃 2 2𝑛𝜃 1 − 𝜃                                                      (7) 

Note that 𝑙𝑜𝑔 𝑔 𝑦, 𝜃  =  − 1 2  𝑙𝑜𝑔 2𝜋 −  1 2  log𝑛𝜃 1 − 𝜃 −   𝑦 − 𝑛𝜃 2 2𝑛𝜃 1 − 𝜃    

From which, 

𝜕2 log 𝑔 𝑦,𝜃 

𝜕𝜃2 = −  −2𝜃 1 − 𝜃 −  1 − 2𝜃 2 2𝜃2 1 − 𝜃 2  −

 

2𝑛𝜃2 1 − 𝜃 2 2𝑦2 + 2𝑛2𝜃 − 4𝑛𝜃𝑦 −

 2𝑦2𝜃 − 𝑦2 + 𝑛2𝜃2 − 2𝑛𝜃2𝑦 

 −4𝑛𝜃2 + 4𝑛𝜃3 + 4𝑛𝜃 1 − 𝜃 2 

 

4𝑛2𝜃4 1 − 𝜃 4

 
 

Hence, the Fisher information in  𝑌 is 

𝐼𝑁 𝜃 =   −2𝜃 + 2𝜃2 − 1 + 4𝜃 − 4𝜃2 2𝜃2 1 − 𝜃 2  −  

2𝑛𝜃2 1 − 𝜃 2 2𝐸 𝑦2 + 2𝑛2𝜃 − 4𝑛𝜃𝐸 𝑦  

− 2𝐸 𝑦2 𝜃 − 𝐸 𝑦2 + 𝑛2𝜃2 − 2𝑛𝜃2𝐸 𝑦  

 −4𝑛𝜃2 + 4𝑛𝜃3 + 4𝑛𝜃 1 − 𝜃 2 

 4𝑛2𝜃4 1 − 𝜃 4  

     Since 𝐸𝑌 = 𝑛𝜃  ,𝐸𝑌2 = 𝑛𝜃 − 𝑛𝜃2 + 𝑛2𝜃2  . 

Hence, 

𝐼𝑁 𝜃 =   2𝜃 − 2𝜃2 − 1 2𝜃2 1 − 𝜃 2  −  
2𝑛𝜃2 1 − 𝜃 2 2𝑛𝜃 − 2𝑛𝜃2 + 2𝑛2𝜃 − 2𝑛2𝜃2 

− 3𝑛𝜃2 − 2𝑛𝜃3 − 𝑛𝜃  −12𝑛𝜃2 + 8𝑛𝜃3 + 4𝑛𝜃 
 4𝑛2𝜃4 1 − 𝜃 4   

  Then the relative loss in the Fisher information due to this approximation 

                                        𝐿 =  (𝐼𝐵𝑖𝑛  𝜃 − 𝐼𝑁 𝜃 ) 𝐼𝐵𝑖𝑛  𝜃                                                                                                                (𝟖) 
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3. APPROXIMATIONS BY KULLBACK – LIEBLER INFORMATION MEASURES 

We measure information by using Kullback- Liebler information measure : 

3.1 Poisson Approximation to Binomial Distribution 

Let 𝑌1 , … , 𝑌𝑛  be i.i.d from 𝐵(1,𝜃),  𝑋 =  𝑌𝑖
𝑛
𝑖=1 ∶ 𝐵 𝑛, 𝜃  with a 𝑝. 𝑑.𝑓 as in Equation (1) . On the other hand, assume that  

𝑋: 𝑃 𝑛𝜃  with a 𝑝. 𝑑.𝑓 as in Equation (3); then Kullback-Liebler information measure is given by  

𝐾𝑙 𝑓1: 𝑓2 = 𝐸𝑓1
𝑙𝑜𝑔 𝑓1 𝑥 𝑓2 𝑥   = 𝐸𝑓1

𝑙𝑜𝑔 𝑛! 𝜃𝑥  1 − 𝜃 𝑛−𝑥𝑥! 𝑥!  𝑛 − 𝑥 ! 𝑒−𝑛𝜃  𝑛𝜃 𝑥   

      = 𝑙𝑜𝑔 𝑛! + 𝑛𝜃𝑙𝑜𝑔 𝜃 + 𝑛 1 − 𝜃 𝑙𝑜𝑔 1 − 𝜃 + 𝑛𝜃 − 𝑛𝜃𝑙𝑜𝑔 𝑛𝜃 − 𝐸𝑓1
𝑙𝑜𝑔 𝑛 − 𝑥 !                        (9) 

 3.2 Normal Approximation to Poisson Distribution 

Let 𝑋 =  𝑌𝑖
𝑛
𝑖=1 : 𝑃 𝑛𝜃   with a 𝑝. 𝑑. 𝑓  as in equation (3). On the other hand let  𝑋: 𝑁 𝑛𝜃, 𝑛𝜃   with the 𝑝. 𝑑. 𝑓   

                                        𝑓0 𝑥 =  1  2𝜋𝑛𝜃  exp −  𝑥 − 𝑛𝜃 2 2𝑛𝜃       , −∞ < 𝑥 < ∞                                                          (10) 

It is interesting to note that 𝑓0 𝑥  is a  𝑝. 𝑑.𝑓  of a continuous distribution, the discrete analogue of this is  

𝑓2 𝑥 = 𝑃𝑓0
 𝑥 − 1 2 < 𝑋 < 𝑥 + 1 2  =  𝑓0 𝑦 𝑑𝑦

𝑥+1 2 

𝑥−1 2 
=  1  2𝜋𝑛𝜃   exp −  𝑦 − 𝑛𝜃 2 2𝑛𝜃  𝑑𝑦

𝑥+1 2 

𝑥−1 2 
   ,      𝑥 = 0,1,2,…                                                           

Then the Kullback-Liebler information measure of this approximation is given by 

                 𝐾𝑙 𝑓1: 𝑓2 = 𝐸𝑓1
𝑙𝑜𝑔 𝑓1 𝑥 𝑓2 𝑥   =  𝑓1 𝑥 𝑙𝑜𝑔

∞
𝑥=0  𝑓1 𝑥 𝑓2 𝑥                                                                     (11) 

3.3 Normal Approximation to Binomial Distribution 

Let  𝑋 =  𝑌𝑖
𝑛
𝑖=1 ∶ 𝐵 𝑛, 𝜃  with a 𝑝. 𝑑.𝑓  given by equation  (1). On the other hand, let  𝑋: 𝑁(𝑛𝜃, 𝑛𝜃 1 − 𝜃   with the 𝑝. 𝑑. 𝑓 

𝑓0 𝑥 =  1  2𝜋𝑛𝜃 1 − 𝜃   exp −  𝑥 − 𝑛𝜃 2 2𝑛𝜃 1 − 𝜃    , −∞ < 𝑥 < ∞ 𝑎𝑛𝑑 𝑧𝑒𝑟𝑜 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒   

The discrete analogous p.d.f of this is  

𝑓2 𝑥 = 𝑃𝑓0
 𝑥 − 1 2 < 𝑋 < 𝑥 + 1 2   ,   𝑥 = 0,1,2, …  

=  𝑓0 𝑦 𝑑𝑦

𝑥+1 2 

𝑥−1 2 

=  1  2𝜋𝑛𝜃 1 − 𝜃    exp −  𝑦 − 𝑛𝜃 2 2𝑛𝜃 1 − 𝜃   𝑑𝑦

𝑥+1 2 

𝑥−1 2 

 

Then the Kullback-Liebler information measure is  

                𝐾𝑙 𝑓1: 𝑓2 = 𝐸𝑓1
𝑙𝑜𝑔 𝑓1 𝑥 𝑓2 𝑥   =  𝑓1 𝑥 𝑙𝑜𝑔

∞
𝑥=0  𝑓1 𝑥 𝑓2 𝑥                                                                    (12) . 

4. RESULTS  

Throughout this section, the Python 3.3 programs using the numpy library have been used to perform the computations 
and plotting the figures. 

4.1 The Approximation by Fisher Information Measure 

Equation (6) is used for computing the smallest sample size to approximate the Poisson distribution by the normal 
distribution, within a relative loss of 𝜀 = 0.1. The different values of the sample size corresponding to values of  0 < 𝜃 < 1 

are explained in Figure 4.1 below. 
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Figure 4.1: The smallest required sample size to approximate the Poisson distribution by the normal distribution 
for 𝟎 < 𝜽 < 𝟏 , within a relative loss of 𝜀 = 0.1. 

In Figure 4.2 below, we show the probability density functions for the Poisson and Normal distributions, for different values 

of the relative loss (𝜀 = 2−3 , 2−4, … , 2−8) in the Fisher information measure. 

 

Figure 4.2: The probability density functions for the Poisson distribution and the normal distribution under the 
Fisher’s approximation measure. 

For the approximation of the binomial distribution by the normal distribution, Equation (8) is used to compute the value of 
the relative loss 𝐿 as a function in the sample size 𝑛 for each value of  𝜃 = 0.1: 0.1: 0.9 , for a relative loss  𝜀 < 0.05. 
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Figure 4.3: The required sample size to approximate the binomial distribution by the normal distribution for 
𝜽 = 𝟎. 𝟏: 𝟎. 𝟏: 𝟎. 𝟗 , within a relative loss of 𝜺 = 𝟎. 𝟎𝟓 

 

Figure 4.4: Approximation of the Binomial distribution by the normal distribution under the Fisher’s information 
measure. 

It is clear that Figure 4.3 give that this approximation is good enough even for small sample size i.e.  𝑛 ≤ 20 if  𝜃 =
0.2 ,0.3 ,… ,0.8. 

4.2 The Approximation by the Kullback-Liebler Information Measure 

Equation (9) is used to evaluate 𝐾𝑙 𝑓1: 𝑓2  as a function in the sample size 𝑛 to approximate the Poisson distribution by the 

binomial distribution for  0.2 < 𝜃 < 0.7. The values of 𝐾𝑙 𝑓1: 𝑓2  are explained in Figure 4.5. 



                                                                                   ISSN 2347-1921 
               
 

1014 | P a g e                                                F e b r u a r y  1 9 ,  2 0 1 4
            

 

Figure 4.5: The Kullback-Liebler measure for approximating the Poisson distribution by the binomial distribution 
for 𝜽 = 𝟎. 𝟐: 𝟎. 𝟏: 𝟎. 𝟕 

It is clear from the graph of  Figure 4.5 that  almost all values of 𝐾𝑙 𝑓1: 𝑓2  are very close to zero, which means that this 

approximation is very good  even for small sample sizes. 

To approximate the Poisson distribution by the normal distribution using the Kullback-Liebler information measure, 
Equation (11) is used to evaluate 𝐾𝑙 𝑓1: 𝑓2   for   𝜃 = 0.1: 0.1: 0.6 . The results obtained are explained in Figure 4.6 below. 
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Figure 4.6: The Kullback-Liebler information measure for the approximation of the Poisson distribution by the 
normal distribution for 𝜽 = 𝟎. 𝟏: 𝟎. 𝟏: 𝟎. 𝟔 

It is clear that from the Figure 4.6 that all values of 𝐾𝑙 𝑓1: 𝑓2  for the reported values of the sample size 𝑛 are almost equal 

to zero . So the approximation is good for  𝑛 ≥ 30, and 𝜃 ≥ 0.1. 

Finally, to approximate the binomial distribution by the normal distribution, Equation (12) is used to compute 𝐾𝑙 𝑓1: 𝑓2   for  

𝜃 = 0.4: 0.1: 0.9 ,Figure 4.7 shows the obtained values of 𝐾𝑙 𝑓1: 𝑓2  versus 𝑛.  
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Figure 4.7: The Kullback-Liebler information measure for approximating the Binomial distribution by the normal 
distribution for 𝜽 = 𝟎.𝟒: 𝟎. 𝟏: 𝟎. 𝟗 

It is clear from Figure 4.7 that the smallest sample size for which the two distributions become within a tolerance value of 
𝐾𝑙 𝑓1: 𝑓2 ≤ 0.02 increases with the value of the parameter 𝜃. For 𝜃 = 0.4: 0.1: 0.9 the approximation is good enough for 

values of 𝑛 ≥ 50. 

5. CONCLUSIONS 

This paper discussed the approximations of the Poisson distribution by both the binomial and normal distribution and the 
binomial distribution by the normal distribution using the Fisher and Kullback-Liebler information measures. 

In the Fisher information measure, it was first noticed that this measure is not possible to approximate the Poisson 
distribution the normal distribution, since the relative loss is free of the sample size 𝑛. Then, from Figure 4.1 it was clear 

that the approximation Poisson distribution by the normal distribution is good enough even for small sample size when  
0.2 < 𝜃 < 0.8  . Note that for the cases reported in Figure 4.1 , the mean of the Poisson distribution 𝑛𝜃 takes values 

between 20 and  80. These results are confirmed by Figure 4.2. Finally, when approximating the binomial distribution by 

the normal distribution, it is noticed from Figure 4.3 that the sample size is symmetric around  𝜃 = 0.5. The sample size 

decreases in the range 0.1 < 𝜃 < 0.5 and increases in the range 0.5 < 𝜃 < 0.9. The binomial distribution and the normal 

distribution become identical for 𝜃 = 0.5. 

In the Kullback-Liebler information measure, when approximating the Poisson distribution by the binomial distribution, 
Figure 4.5 showed that the Kullback-Liebler measure increases proportional to 𝜃. When approximating the Poisson 

distribution by the normal distribution, the smallest sample size for which the two approximation are identical decrease 
with the values of 𝜃. The two distributions are always identical for sample sizes 𝑛 ≥ 30. Finally, when fixing a tolerance 

level 𝐾𝑙 𝑓1: 𝑓2 ≤ 0.02 it was noticed that the minimum sample size such that the Kullback-Liebler information measure of 

the approximation of the binomial distribution to the normal distribution become within the given tolerance increases with 
the value of 𝜃, and if the sample size exceeds 50 the approximation is good enough. 
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