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Abstract: one of the important problems of stochastic processes theory is to define the Laplace-Stieltjes transform for
the ergodic distribution of semi-markov random process. With this purpose, we will investigate the semi-markov random
processes with positive tendency, negative jumps and delaying boundary at zero in this article. The Laplace transform on
time, Laplace-Stielties transform on phase of the conditional and unconditional distributions and Laplace-Stieltjes
transform of the ergodic distribution are defined. The characteristics of the ergodic distribution will be calculated on the
basis of the final results.
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Introduction

There are number of works devoted to definition of the distribution of the semi-markov processes and its main boundary
functionals. Some authors are used the asymptotic, factorization and etc. methods ([2],[4].[5],[6].[9][12]) But other authors
narrowing the class of distributions of walking are found the evident form for Laplace transforms for distributions and its
main characteristics. In [7] The Laplace transformation for the distribution of the time of the system sojourn within a given
band and its first and second moments are found .In [8] a model of inventory control is considered. It is described by a
semi-markov random walk with a negative drift at an angle of 0 < a < 90°, with positive random jumps, a delay, an
absorbing screen at zero, and a reflecting screen for a > 0 at an angle a. The Laplace transformation is found for the
distribution of the first moment storehouse exhaustion, and the first and the second moments are explicitly obtained. In [9]
The Laplace-Stieltjes transform with respect to phase, the Laplace transform with respect to time, the conditional
distribution, the unconditional distribution, and the Laplace-Stieltjes transform of the ergodic distribution of the process of
semi-markov random walk with negative drift, nonnegative jumps, delays, and boundary screen at zero are obtained. In
[10] The first passage of the zero level of the semi-markov process with positive tendency and negative jumps will be
included as a random variable. The Laplace transform for the distribution of this random variable is defined. In [11] for the

step process of semi-markov random walk with delaying boundary in @ >0 the evident form of Laplace transform by
time was found.

The presented work explicitly defines the Laplace transform on time, Laplace-Stielties transform on phase of the
conditional and unconditional distributions and Laplace-Stieltjes transform of the ergodic distribution for the semi-markov
random processes with positive tendency, negative jumps and delaying boundary at zero.

1. Problem
Let's assume that in probability space {Q, F, P()} is given the sequence of independent , equally distributed and

independent themselves positive random variables fk and é’k , Kk =1,00. Using these random variables we will derive
the following semi-markov random process:

Xl(t)=z+t—l_§§i, if %legist<zk:§i, k:ﬁo

Xl(t) is called semi-markov random processes with positive tendency and negative jumps.
General form of process semi-markov random walk with delaying boundary is given by A.A. Borovkov[1]

If process Xi(t:] is some process without boundary, then process X[t] with delaying boundary at zero is defined
following :

X(@® =X, (O inf (0,X,(s)) o X(t)=max(0,Inf (0,X,(s))
Idea of construction of the process semi-markov random walk is following :
Let X;(0) =z >0. Process X(t) is equally to process X, (t) until, the process X, (t) is positive.
Let X,(t) <0 ;then X (t) is equally to zero until, the process X, (t) will not have positive jump. In moment of jump
of the process Xl(t) , process X (t) will be have jump, such is equally to jump of the process Xl(t) .

The obtained process is called a process of a semi-markov random walk with positive tendency, negative jumps and
delaying boundary at zero.

The aim of the present study is to find an evident form of the Laplace-Stieltjes transform of the ergodic distribution for X(t).
2. Definition of Laplace transform on time for the distribution of the process X(t)

In accordance with formula of total probability for x = 0 we have

P{X(t) < x| X(0) =z} = P{X(t) < x;& >t| X (0) = z}+ P{X (t) < x;&, <t| X (0) =z} =

P{z+t<x& >t}+ T Tp{gl e ds; X(s) edy| X(0) =z}-P{X (t—s) < x| X(0) = y}
o (1)

We denote
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R(t,x|2)=P{X({)<x|X(@0)=2z}, x>0
R(6,X|2) = Te‘“R(t,x|z), >0 ,
;(H,a | 2) :Te”‘xdX R(t, x| 2), a > 0.

)

In this case equation (1) will be as follows :

R(t,x|z) = P{z+t—x <0JP{&, > t}+ T j.P{gl edsfd,P{max(0,z+s-¢;) < y}R(t-s,x|y)

y=0s=0

Both sides of this equation we applied Laplace transform by “t”

Te*'” R(t, x| Z)dt =Te‘9‘ s(x—z-t)P{g, > tidt + Tﬁ(ﬁy x| y) Tem d, Pimax(0,z+t-¢,) < yjdPig, <t)

y=0 t=0

where, @ = 0

Further

R(0,x|2) = g(x—z)xfe-mp{gl > tldt + Tﬁ(@,x| y) Te““ d, P{O<y}Pz+t-¢, < y}dPg <t}

y=0

After some simplifications we will get:

R(0,x|2) = e(x - z)sze-ﬁtp{g1 > tjdt + Tﬁ(e, x| y) Te‘“dyg(y)[l— P{¢, <z+t—y}]dP{g <t}=

y=0

= e(x— z)sze-ﬂtp{f1 > tldt + R(6, x| O)Te-“ dP{, <t}— Tﬁ(e, x| y) Te%lyp{g1 <z+t-yldP{s <t}=
0 0 y=0 t=0

= e(X— z)xre-mp{g1 > tldt + R(6, x| O)Te‘m dP{E, <t} — Tﬁ(e,x| y) Te-“dyp{gl <z+t-yldP{s <t}

y=0 t=max(0,y-z)

If take into account

0, if
max{O,y—z}:{ I y<z
y-z, ify>z

that is, why we get

R(0,x|2) = (x— z)Te-“P{gl > tdt +

+R(6, x| O)Te““ dP{g, <t}—
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z

- [R@.x]y) Te“‘“dyP{g1 <z+t—y}dP{g <t}

y=0
_[R@.x]y) [ed,Plg, <z+t-y}dPig <t} @)
y=z t=y-z

Both sides of this equation we applied Laplace transform by “x” [see (2)]

R(O.12)= [e*d,e(x=2) [ePLE, > t)dt+
t=0

x=0

+ S 0, | O)Te“" dP{&, <t}

= F~2(t9,a | y)je‘“dyP{gl <z+t-y}dP{E, <t}—
=0 t=0

y

_ T; 0,e|y) Te“dyp{gl <z+t-yjdP{ <t}

y=z t=y-z

Take into consideration

Ie“”dxg(x —2) Ie“"P{fl > tjdt =
t=0

x=0

|| &y 8

e “*e(x-2)d, Ie‘“P{gl > tdt + je‘“
t=0 x=0

0

_e““P{fl > tjdtd,e(x - z)
0

t=

>

e d, je‘“P{él >tldt = J.e‘”‘xe“g(x‘z)P{f1 > X — z}dx
t=0

z

0 —3

z

~

At last we received the following integral equation for R (6, | Z)when &, and ¢, K =1,00equally distributed and

independent themselves positive random variables

ﬁ(é’,a |z) = egzj'e’(“*g’XP{(fl > X—zjdx +
+R(0,a|0)[e " Pl, > z+thdPlg, <t)-
0
- [R@.aly) [e"d,Pl, <z+t-yldPle, <t}-
y=0 t=0

3 T; 0,a|y) Te‘mdyP{g”l <z+t-y}dP{g <t}

y=2 t=y-z

4

We will solve this integral equation in special case.

Let's assume that &; random variable has the Erlangian distribution of n order, while ¢, random variable has the single
order Erlangian distribution:
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P{fl(a))<t}={1—{1+M+ﬂ+---+w}e_”t}g(t) , 1>0

2 (n—1)!
PiC.(w) <t} =[l-e]e(t), 150
where
0, t<0
£(t) = {1, t>0

In this case equation (4) will be as follows:

R(O.a|z)= \ZHHFO) =Mz | M | 2 R(g.q]0)-
(a+u+6)" (a+6) A+u+6

H n-;,zzﬂ,z
Al —2 | e# [e?Y RO, a]y)dy-
wa} j 6,a|y)dy
Au”

| e—/lz weiy; 0’ coe—(/lﬂﬁﬁ)t tn—ldtd
0o j @.aly) | y

t=y-z
®)
We will get differential equation from this integral equation. For this purpose, we will multiply both sides of equation (5) by

e™ and derive on z . Then we will multiply both sides of last equation by ef(’H‘”g)Z and derive on z . If repeat this
process (n-1) time we have following differential equation:

®) k1)

icﬁ /1; @,a|2)+R  (0,a|2)|(-D)"* (y+9)"'k+(—1)"-1/1ﬂ”er(e,a|z)=

_ gy letur0) =0 -a) o

(a+6)
(6)
3. The general solution of the differential equation (6)
The general solution of this differential equation will be
R(6,a|z)=C,(8,2)e"?* +C,(8,2)e*"" +....+C_(8,2)e" " + R (8, | 2) )

where

ki (@), 1=1,2,...n,-are the roots of characteristic equation of (6)

~
~

Rsp (8, a | ) - is the special solution of the equation (5)

Rsp(e,a | Z) =Ae“**

where
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a A+ ut6) —p']
(@+0) ] [la+ki (0]

(a+u+6)"—u
(a+u+0)" (a+6)

R(0,0¢]0) = {“zw} R(0,a]0)- (” je“R(ea|y)je”+”+9"t“dtdy

t=y

R'(0,a|0)=-q @FHFO —1” 1 M R(O,a|0)+2 ” Ie“R(ea|y)Ie‘“’”€”t‘1dtdy
(a+u+0)" (a+6) A+u+6 (n-

t=y

@ _1), e R (0,01 y)y"dy

C R (k)(e 0{|O)+R (k+1)(9 0(|0)] ( 1)n k [(a+,u+0() +g; ](ﬂ“ a) ( 1)n_1ﬂ,/,ln]?e_(ﬂ+0)y;(0,0{|y)dy

®)
By finding £ (Exﬂf:] .. 2 [5, ﬂf] from equation (5) we will get the following system of algebraic equations:

By
exploitation of equation (7), equation (8) becomes

n & (a+y+9)n_ﬂn
ZCi(‘g’a”A_((;H;HH)“ (a+<9)j{/1+,u+9} {ZC @ aHA}

A j “[Zc (0, x)e" 9)y+Ae“"y]|. g it MLty

(n 1)' i=1 t=y
n el (a+u+60)" —u" B
D Loy ”’Lw 0} {ZC & “”A}
(/:] ”1)' j e“{ZC (0,2)e" ) + Ae ”‘y][e (O 0Lty —
(f’u il Te’(’””)y [ZC‘ (6, )e" Y + Ae“y} y"dy

n n n n
ZCf{ﬂ{Zk”Ci(e,a)+a”A} {Zk"ﬂc o, a)+a"”A}}=(-1)”'la"'l [(0‘*”*9() +‘9ﬁ)‘ 14-2) _
i=1 i=1 (24

— ()" A" [t {ZQ (6, a)e""? + Ae“y}dy
7 i=1

)

1004 |Page February 19, 2014



LN

Now we proof linear dependence of this algebraic system

If to consider the following substitutions:

[Tle+0-k @)= (0"

n

[TA+k(@)]= (1" 4"

i=1

ll[[ﬂ +0-k,(0)]= (D" [r+k,@]u+0-Kk, O = ()" 4u"

i=1

n

[Tle+k @)= (2-a)(u+0+a)" —iu"

i=1

o0 -1 —k
J.t n—1e—(/1+,u+€)t dt — yn 4 Zn: (n - 1)' yn e—(/1+,u+9)y

f A+u+6 SO-KA+u+0)
(10)
equation (9) becomes:
\ "o au’ [(a+p+0)" —u'] "
u+0=k @) —u" §Ci(0,a)= : 1=ou” A
Z];{[ J } (@+0)| " —(A-a)(u+6+a)]
\ m ap” [(a+u+6)" —u'] "
[u+6-k @) - " j C/(6.a)= : =au" A
.Zl“{ } (a+6?)[/1,u —-A-a)(u+0+a) J
\ n o ap” [(a+u+6)" —u'l n
u+0-ki (@) —pu" ;Ci(0,a)= = =ou” A
ZE{[ ] } (@+0)| A" —(A—a)(u+0+a)"]
(11)
Thus, (11) is a linear dependence equations system, as
C,(0,)=C,(0,a)=----=C,(6,) =0
Then we have
C.(0 ) au [S()t+/n¢+9)n —u'] . 54
(a+0)(u+0-k O] = u")Au" —(A-a)u+0+a)]
Then the general solution of integral equation (5) will be as follows:
R(0,a]2)= ap’ o+ ps6) —p] ek
(a+0)(u+0-k O] —u")au" ~(A-a)u+6+a)]
(A-a)a+u+6)"—u"] ar

.
(@+0) [ " —(A-a)(u+0+a) |

13)
This expression is the Laplace transform on time, Laplace-Stieltjes transform on phase for conditional distribution of the
process X (t)

4. Ergodic distribution of the process.
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We will need to find Laplace transform on time, Laplace-Stieltjes transform on phase for unconditional distribution of the

process X (t) .

From construction process X (t) is seen that

X(0) = X,(0) = & ()

Then we will get

R 0, a) = TS (0, | 2) dP{X(0) < 2}

Therefore
;(e’a): T[ a:un [(a+lu+0)n _ﬂn] ekl(a)z +
2o (a+0) (u+0-k O] —u") " ~(A-a)u+6+a)]
(ﬂ’-a)[(a—i_ﬂ_'_e)n _/un] e—aZ]d[l_e—yZ]
(@+0) " -(A-a)(u+0+a)"]
R 0.0) - op" [(a+u+6)" —u"] H
(¢:) @+ 0)[u+ 0-k O — ") e —(G-a)u+0+ay] ik (@)
A-a)la+u+6)"—u"] H

(@+0) " —(A-a)(u+0+a) |[a+u]

This expression is Laplace transform on time, Laplace-Stieltjes transform on phase for unconditional distribution of the
process X (t) .

Now, we will find Laplace-Stieltjes transform for ergodic distribution of the process X (t) .

In [3] ( see p.363) proved a general theorem on the ergodicity of the process semi-markov random walk. The process
described in this article a special case of this process.

Process X (t) will be ergodic, if EE < ES | or
1

n
—<—=4<n
u A 4

If process X (t) ergodic,then we can use Tauber’s theorem [4]

Ee“X® =R(a) = lim 6 R (0,a)
We obtined

R(a)=—2 [(o+p)" - 1"l
(n=D!'Au" +(a—D(a+u)"]

Expression (14) is Laplace-Stieltjes transform for ergodic distribution of the process X (t) .Respectively, we will get the

(14)

following characteristics for A < Ng:
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ﬁ’(O):—EX(w):%, 2 <nu

2n

R(0)-[R(0)]" = DX(w) = Gona)"

, A<nu

5. Conclusions

In this article we have defined Laplace transforms on time, Laplace-Stieltjes transforms on phase for conditional and
unconditional distributions and Laplace-Stieltjes transform for the ergodic distribution.
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