

Volume 14 Number 01 JOURNAL OF ADVANCES IN MATHEMATICS

Argument estimates of certain classes of P-Valent meromorphic functions involving certain operator

A. O. Mostafa¹,M. K. Aouf ² and S. M. Madian³

 1,2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
 3 Basic Sciences Department, Higher Institute of Engineering and Technology, New Damietta, Egypt
 1adelaeg254@yahoo.com, 2mkaouf127@yahoo.com
 3samar_math@yahoo.com

ABSTRACT

In this paper, by making use of subordination, we investigate some inclusion relations and argument properties of certain classes of p-valent meromorphic functions involving certain operator.

Indexing terms/Keywords

Argument estimates, Hadamard product, certain operator, meromorphic functions.

SUBJECT CLASSIFICATION

2010 Mathematics Subject Classification: 30C45.

1. Introduction

For any integer m > -p, let $\sum_{p,m}$ denote the class of meromorphic functions f(z) of the form:

$$f(z) = z^{-p} + \sum_{k=m}^{\infty} a_k z^k \ (m > -p; \ p \in \mathbb{N} = \{1, 2, \dots\}),$$
 (1.1)

which are analytic and p-valent in the punctured open unit disc $U^* = \{z \in \mathbb{C} : 0 < |z| < 1\} = U \setminus \{0\}$. For convenience, we write $\sum_{p,1-p} = \sum_p$ and $\sum_{1,0} = \sum$. If f(z) and g(z) are analytic in \mathbb{U} , we say that f(z) is subordinate to g(z), written $f \prec g$ or $f(z) \prec g(z)$ $(z \in \mathbb{U})$, if there exists a Schwarz function w(z) in \mathbb{U} with w(0) = 0 and |w(z)| < 1 $(z \in \mathbb{U})$, such that f(z) = g(w(z)) $(z \in \mathbb{U})$ Furthermore, if g(z) is univalent in \mathbb{U} , then the following equivalence relationship holds true (see [7] and [18]):

$$f(z) \prec g(z) \Leftrightarrow f(0) = g(0)$$
 and $f(U) \subset g(U)$.

For functions $f(z) \in \sum_{p,m}$, given by (1.1) and $g(z) \in \sum_{p,m}$ defined by

$$g(z) = z^{-p} + \sum_{k=m}^{\infty} b_k z^k \quad (m > -p; p \in \mathbb{N}),$$

the Hadamard product (or convolution) of f(z) and g(z) is given by

$$(f * g)(z) = z^{-p} + \sum_{k=m}^{\infty} a_k b_k z^k = (g * f)(z).$$

For complex parameters $\ lpha_{_{1}},lpha_{_{2}},...,lpha_{_{q}}$ and

 $\beta_1, \beta_2, ..., \beta_s \ (\alpha_i, \beta_i \notin Z_0^- = \{0, -1, -2, ...\}, i = 1, 2, ..., q, \ j = 1, 2, ..., s), \ \text{the generalized hypergeometric}$

function $_qF_s$ ($\alpha_1,\alpha_2,...,\alpha_q;\beta_1,\beta_2,...,\beta_s;z$) is defined by (see [22])

$$_{q}F_{s}(\alpha_{1},\alpha_{2},...,\alpha_{q}; \beta_{1},\beta_{2},...,\beta_{s}; z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}...(\alpha_{q})_{k}}{(\beta_{1})_{k}...(\beta_{s})_{k}(1)_{k}} z^{k}$$

$$(q \le s+1; s, q \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}; z \in \mathbb{U}),$$

where $\,(heta)_{\it k}\,$, $\,$ is the Pochhammer symbol defined in terms of the Gamma function $\,$ $\,$ $\,$ by

$$(\theta)_{v} = \frac{\Gamma(\theta + v)}{\Gamma(\theta)} = \begin{cases} 1 & (v = 0; \ \theta \in \mathbb{C}^{*} = \mathbb{C} \setminus \{0\}) \\ \theta(\theta + 1)....(\theta + v - 1) & (v \in \mathbb{N}; \ \theta \in \mathbb{C}). \end{cases}$$

Liu and Srivastava [16] and Aouf [4] investigated recently the operator $\Upsilon_{p,q,s}(\alpha_1,\alpha_2,...,\alpha_q;$

 $\beta_1, \beta_2, ..., \beta_s$): $\sum_{p,m} \rightarrow \sum_{p,m}$, defined as follows:

$$\Upsilon_{p,q,s}(\alpha_{1}) = \Upsilon_{p,q,s}(\alpha_{1}, \alpha_{2}, ..., \alpha_{q}; \beta_{1}, \beta_{2}, ..., \beta_{s}; z) = z^{-p} {}_{q}F_{s}(\alpha_{1}, \alpha_{2}, ..., \alpha_{q}; \beta_{1}, \beta_{2}, ..., \beta_{s}; z),$$

$$= z^{-p} + \sum_{k=1-p}^{\infty} \frac{(\alpha_{1})_{k+p} ...(\alpha_{q})_{k+p}}{(\beta_{1})_{k+p} ...(\beta_{s})_{k+p}(1)_{k+p}} a_{k}z^{k}.$$
(1.2)

With aid of the function $\Upsilon_{p,q,s}(\alpha_1)$ given by (1.2), consider the function $\Upsilon_{p,q,s}^*(\alpha_1)$ defined by:

$$\Upsilon_{p,q,s}(\alpha_1) * \Upsilon_{p,q,s}^*(\alpha_1) = \frac{1}{z^p (1-z)^{\lambda+p}} (\lambda > -p; p \in \mathbb{N}; z \in \mathbb{U}^*). \tag{1.3}$$

This function leads us to the following family of linear operators $\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) \colon \sum_{p,m}^{\lambda} \to \sum_{p,m}^{\lambda}$, which are given by:

$$\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) = \Upsilon_{p,q,s}^*(\alpha_1) * f(z) (f \in \Sigma_{p,m}). \tag{1.4}$$

The linear operator $\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)$ was defined by Patel and Patil [20] and Mostafa [17]. If f(z) is given by (1.1), then from (1.4), we deduce that

$$\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z) = z^{-p} + \sum_{k=m}^{\infty} \frac{(\beta_1)_{k+p}...(\beta_s)_{k+p}(\lambda+p)_{k+p}}{(\alpha_1)_{k+p}...(\alpha_q)_{k+p}} a_k z^k$$

$$(f \in \sum_{p,m}; \lambda, m > -p; p \in \mathbb{N}; z \in \mathbb{U}^*). \tag{1.5}$$

It is easily verified from (1.5) that (see [20] and [17])

$$z\left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)\right) = (\lambda + p)\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1)f(z) - (\lambda + 2p)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)$$
(1.6)

and

$$z\left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1+1)f(z)\right) = \alpha_1 \mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z) - (\alpha_1+p)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1+1)f(z). \tag{1.7}$$

For a function $f \in \sum_p$ and $\mu > 0$, let $F_{\mu,p} : \sum_p \to \sum_p$ be the integral operator defined by (see [13]):

$$F_{\mu,p}(f)(z) = \frac{\mu}{z^{\mu+p}} \int_{0}^{z} t^{\mu+p-1} f(t) dt = z^{-p} + \sum_{k=1-p}^{\infty} \frac{\mu}{\mu+k+p} a_k z^k$$
(1.8)

$$(f \in \sum_{p}; \mu > 0; p \in \mathbb{N}; z \in \mathbb{U}^{*}).$$

It follows from (1.8) that:

$$z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(f)(z))' = \mu \mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z) - (\mu + p)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(f)(z). \tag{1.9}$$

We note that:

Putting $\lambda = 1 - p$ ($p \in \mathbb{N}$) in (1.5), then the operator $\mathbf{M}_{p,q,s}^{1-p,m}(\alpha_1)$ reduces to the operator $\mathbf{M}_{p,q,s}^m(\alpha_1)$, defined by:

$$\mathbf{M}_{p,q,s}^{m}(\alpha_{1})f(z) = z^{-p} + \sum_{k=m}^{\infty} \frac{(\beta_{1})_{k+p}...(\beta_{s})_{k+p}}{(\alpha_{1})_{k+p}...(\alpha_{q})_{k+p}} a_{k}z^{k} \quad (f \in \sum_{p,m}; m > -p; p \in \mathbb{N}; z \in \mathbb{U}^{*})$$

Also, by specializing the parameters λ , m, p, α_i (i=1,2,...,q), β_j (j=1,2,...,s), q and s, we have:

(i)
$$\mathbf{M}_{p,2,1}^{0,m}(p,p;p)f(z) = \mathbf{M}_{p,2,1}^{1}(p+1,p;p)f(z) = f(z)(p \in \mathbb{N});$$

(ii)
$$\mathbf{M}_{p,2,1}^{1,m}(p,p;p)f(z) = \frac{2pf(z)+zf^{'}(z)}{p}(p \in \mathbb{N});$$

(iii)
$$\mathbf{M}_{p,2,1}^{2,m}(p+1,p;p)f(z) = \frac{(2p+1)f(z)+zf^{'}(z)}{p+1}(p \in \mathbb{N});$$

(iv) $\mathbf{M}_{p,2,1}^{n,0}(a,1;a)f(z) = D^{n+p-1}f(z) \ (n>-p,a>0, p\in \mathbb{N})$ (see Yang [23] and Aouf ([2] and [3])), which for p=1 reduces to the operator $D^nf(z)$ (n>-1) (see Cho [8]);

(v)
$$\mathbf{M}_{p,2,1}^{0,m}(p+1,p;p)f(z) = \frac{p}{z^{2p}} \int_{0}^{z} t^{2p-1} f(t) dt (p \in \mathbb{N});$$

(vi)
$$\mathbf{M}_{p,2,1}^{1-p,m}(\mu+1,1;\mu)f(z) = F_{\mu,p}(f)(z)$$
 $(p \in \mathbb{N}, \mu > 0)$, this integral operator is defined by (1.8);

$$\text{(vii)} \ \ \mathbf{M}^{\lambda,m}_{p,2,1}(c,p+\lambda;a)f(z) = L_p\big(a;c\big)f\big(z\big) \ \Big(p \in \mathbb{N}, a \in \mathbb{R} \setminus Z_0^-\big) \ (\quad \text{see Liu [15] });$$

- (viii) $\mathbf{M}_{p,2,1}^{\lambda,1-p}(a,1;c)f(z) = L_p^{\lambda}(a;c)f(z)\left(\lambda > -p,p\in \mathbb{N},a,c\in \mathbb{R}\setminus Z_0^-\right)$ (see Aouf et al. [5]), which for p=1 reduces to $L^{\lambda}(a;c)$ (see Aghalary [1]);
- (ix) $\mathbf{M}_{p,2,1}^{\eta-p,1-p}(n+p,\eta;\eta)f(z) = I_{n+p-1,\eta}f(z) \ (\eta>0,n>-p,p\in \mathbb{N})$ (see Aouf and Xu [6]), which p=1 reduces to $I_{n,n}$ (see Yuan et al. [24]);
- (x) $\mathbf{M}_{1,q,s}^{\sigma-1,0}(\alpha_1)f(z)=H_{\sigma,q,s}(\alpha_1)f(z)\left(\sigma>0\right)$ (see Cho and Kim [9]);
- (xi) $\mathbf{M}_{1,2,1}^{x-1,0}(a,1;c)f(z) = I_x(a,c)f(z)$ $(x>0,a,c\in\mathbf{R}\setminus\mathbf{Z}_0^-)$ (Cho and Noor [10]).

Let M be the class of functions h(z) which are analytic and univalent in U and for which h(U) is convex with h(0) = 1 and Re $\{h(z)\} > 0$, $z \in U$.

Now, by using the linear operator $\, {f M}_{p,q,s}^{\lambda,m}(lpha_1) \,$, we define a subclass of $\, \sum_{p,m} \,$ by

$$\sum_{p,q,s}^{\lambda,m} (\alpha_1; h) = \left\{ f : f \in \sum_{p,m} and - \frac{z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z))'}{p\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)} \prec h(z)(h \in M; z \in \mathsf{U}) \right\} (1.10)$$

We also set

$$\sum_{p,q,s}^{\lambda,m} (\alpha_1; \frac{1+Az}{1+Bz}) = \sum_{p,q,s}^{\lambda,m} (\alpha_1; A, B) \quad (-1 < B < A \le 1; z \in \mathsf{U}). \quad (1.11)$$

From (1.10) and (1.11) and by using the result of Silverman and Silvia [21], we observe that a function f(z) is in the class $\sum_{p,q,s}^{\lambda,m}(\alpha_1;A,B)$ if and only if

$$\left| \frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z)} + \frac{p(1 - AB)}{1 - B^2} \right| < \frac{p(A - B)}{1 - B^2} \quad (-1 < B < A \le 1; z \in \mathsf{U}). \tag{1.12}$$

In the present paper, we investigate some inclusion relationships and argument properties of certain meromorphically p -valent functions in U^* in connection with the linear operator $\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)$.

2. Preliminaries

In order to prove our main results, we need to the following lemmas.

Lemma 1 [12]. Let β and υ be complex constants and let h(z) be convex (univalent) in U with h(0)=1 and $Re\{\beta h(z)+\upsilon\}>0$. If $q(z)=1+q_1z+\ldots$ is analytic in U, then

$$q(z) + \frac{zq'(z)}{\beta q(z) + \upsilon} \prec h(z)$$
,

implies

$$q(z) \prec h(z)$$
.

Lemma 2 [18]. Let h(z) be convex (univalent) in U and $\psi(z)$ be analytic in U with $\operatorname{Re}\{\psi(z)\} \geq 0$. If q is analytic in U and q(0) = h(0), then

$$q(z) + \psi(z)zq'(z) \prec h(z)$$
,

implies

$$q(z) \prec h(z)$$
.

Lemma 3 [19]. Let q(z) be analytic in U, with q(0)=1 and $q(z)\neq 0$ $(z\in U)$. If there exists a point z_0 $\begin{tabular}{l} \hline U, \\ \hline \end{bmatrix}$ U, such that

$$\left| \arg q(z) \right| < \frac{\pi}{2} \tau \ for \ |z| < |z_0|$$
 (2.1)

and

$$\left| \arg q(z_0) \right| = \frac{\pi}{2} \tau \quad (0 < \tau \le 1).$$
 (2.2)

Then we have

$$\frac{z_0 q'(z_0)}{q(z_0)} = ix \tau, {(2.3)}$$

where

$$x \ge \frac{1}{2}(b + \frac{1}{b})$$
 when $\arg q(z_0) = \frac{\pi}{2}\tau$, (2.4)

$$x \ge -\frac{1}{2}(b + \frac{1}{b})$$
 when $\arg q(z_0) = -\frac{\pi}{2}\tau$ (2.5)

and

$$q(z_0)^{\frac{1}{r}} = \pm ib \ (b > 0).$$
 (2.6)

3. Some inclusion relationships

By using Lemma 1, we obtain the following results:

Theorem 1. Let $h(z) \in M$ with $\max_{z \in \mathsf{U}} \operatorname{Re}\{h(z)\} < \min\{\frac{\lambda+2p}{p}, \frac{\alpha_1+p}{p}\}$ ($\mathcal{P} \odot \mathcal{P}$, $p \in \mathsf{N}$). Then

$$\textstyle \sum_{p,q,s}^{\lambda+1,m}(\alpha_1;h) \subset \sum_{p,q,s}^{\lambda,m}(\alpha_1;h) \subset \sum_{p,q,s}^{\lambda,m}(\alpha_1+1;h).$$

Proof. To prove the first part, we show that $\sum_{p,q,s}^{\lambda+1,m}(\alpha_1;h) \subset \sum_{p,q,s}^{\lambda,m}(\alpha_1;h)$. Let $f \in \sum_{p,q,s}^{\lambda+1,m}(\alpha_1;h)$ and set

$$R(z) = -\frac{z\left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)\right)'}{p\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)} \quad (z \in \mathsf{U}), \tag{3.1}$$

where R(z) is analytic with R(0) = 1. Using (1.6) in (3.1), we obtain

$$pR(z) - (\lambda + 2p) = -(\lambda + p) \frac{\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) f(z)}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z)}.$$
(3.2)

Differentiating (3.2) logarithmically with respect to z and multiplying by z , we have

$$R(z) + \frac{zR'(z)}{-pR(z) + \lambda + 2p} = -\frac{z\left(\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1)f(z)\right)'}{p\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1)f(z)} \prec h(z), \tag{3.3}$$

from Lemma 1, it follows that $R(z) \prec h(z)$ in U, that is, that $f \in \sum_{p,q,s}^{\lambda,m} (\alpha_1;h)$.

To prove the second part, let $\ f \in \sum_{p,q,s}^{\lambda,m}(lpha_1;h)$ and put

$$s(z) = -\frac{z\left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1+1)f(z)\right)'}{p\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1+1)f(z)} \quad (z \in \mathsf{U}),$$

then, by using the arguments similar to those detailed above and using (1.7) instead of (1.6), it follows that $s(z) \prec h(z)$ in U, which implies $f \in \sum_{p,q,s}^{\lambda,m} (\alpha_1 + 1;h)$. Therefore we compelet the proof of Theorem 1.

Taking $h(z) = \frac{1+Az}{1+Bz}$ $(-1 < B < A \le 1)$ in Theorem 1, we have

Corollary 1. Let $\frac{1+A}{1+B}$ $< \min\{\frac{\lambda+2p}{p}, \frac{\alpha_1+p}{p}\}$ and $-1 < B < A \le 1$. Then

$$\sum_{p,q,s}^{\lambda+1,m}(\alpha_1;A,B) \subset \sum_{p,q,s}^{\lambda,m}(\alpha_1;A,B) \subset \sum_{p,q,s}^{\lambda,m}(\alpha_1+1;A,B).$$

Theorem 2. Let $h(z) \in M$ with $\text{Re } \{h(z)\} < \frac{\mu + p}{p} (\mu > 0)$, if $f \in \sum_{p,q,s}^{\lambda,m} (\alpha_1;h)$, then

 $F_{\mu,p}(f) \in \sum_{p,q,s}^{\lambda,m} (\alpha_1;h)$, where $F_{\mu,p}(f)$ is defined by (1.8) .

Proof. Let $f \in \sum_{p,q,s}^{\lambda,m} (\alpha_1;h)$ and set

$$L(z) = -\frac{z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(f)(z))}{p\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(f)(z)} \quad (z \in \mathsf{U}),$$
(3.4)

where L(z) is analytic with L(0) = 1. Applying (1.9) to (3.4), we get

$$pL(z) - (\mu + p) = -\mu \frac{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z)}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(f)(z)}.$$
(3.5)

Differentiating (3.5) logarithmically with respect to z and multiplying by z, we have

$$L(z) + \frac{zL^{'}(z)}{-pL(z) + \mu + p} = -\frac{z\left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)\right)'}{p\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)} \prec h(z).$$

Hence, by virtue of Lemma 1, we conclude that $L(z) \prec h(z)$ in U, which implies $F_{\mu,\,p}(f) \in \sum_{p,\,q,\,s}^{\lambda,\,m}(\alpha_1;h)$. This compelets the proof of Theorem 2.

Taking $h(z) = \frac{1+Az}{1+Bz}$ $(-1 < B < A \le 1)$ in Theorem 2, we have

Corollary 2. Let $\frac{1+A}{1+B} < \frac{\mu+p}{p} \left(\mu > 0 \right)$ and $-1 < B < A \le 1$, if $f \in \sum_{p,q,s}^{\lambda,m} (\alpha_1; A, B)$, then $F_{\mu,p}(f) \in \sum_{p,q,s}^{\lambda,m} (\alpha_1; A, B)$.

4. Some argument properties

Theorem 3. Let $f(z) \in \sum_{p,m}, 0 < \delta \le 1, 0 \le \ell < p$ and

$$\lambda \ge \frac{p(A-B)}{1+B} - p \ (-1 < B < A \le 1; p \in \mathbb{N}).$$

If

$$\left| \arg \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) g(z)} - \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \sum_{p,q,s}^{\lambda+1,m}(\alpha_1;A,B)$, then

$$\left| \arg \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) g(z)} - \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of the equation

$$\delta = \tau + \frac{2}{\pi} \tan^{-1} \left(\frac{\tau \cos \frac{\pi}{2} t(A, B)}{\frac{(\lambda + p)(1 - B) + p(A - B)}{1 - B} + \tau \sin \frac{\pi}{2} t(A, B)} \right)$$
(4.1)

and

$$t(A,B) = \frac{2}{\pi} \sin^{-1} \left(\frac{p(A-B)}{(\lambda + 2p)(1-B^2) - p(1-AB)} \right). \tag{4.2}$$

Proof. Let

$$q(z) = \frac{1}{p - \ell} \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1) g(z)} - \ell \right), \tag{4.3}$$

where q(z) is analytic with q(0) = 1. Applying the identity (1.6), we have

$$[-(p-\ell)q(z)-\ell]\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)g(z) = (\lambda+p)\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1)f(z) - (\lambda+2p)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z). \tag{4.4}$$

Differentiating (4.4) with respect to z and multiplying by z, we obtain

$$-(p-\ell)zq'(z)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_{1})g(z) + [-(p-\ell)q(z) - \ell]z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_{1})g(z))'$$

$$= (\lambda + p)z(\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1)f(z))' - (\lambda + 2p)z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z))'. \tag{4.5}$$

Then, by using (4.3), (4.4) and (4.5), we have

$$\frac{1}{p-\ell} \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) g(z)} - \ell \right) = q(z) + \frac{z q'(z)}{-r(z) + \lambda + 2p},$$

where

$$r(z) = -\frac{z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)g(z))'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)g(z)}.$$

From Corollary 1, since $g(z) \in \sum_{p,q,s}^{\lambda+1,m}(\alpha_1;A,B)$, then $g(z) \in \sum_{p,q,s}^{\lambda,m}(\alpha_1;A,B)$, which from (1.12) leads to

$$r(z) \prec p \frac{1 + Az}{1 + Bz}$$
.

Letting

$$-r(z)+\lambda+2p=\rho e^{i\frac{\pi}{2}\phi} \ (z\in \mathsf{U}),$$

then from (1.12) we have

$$\frac{(\lambda + p)(1+B) - p(A-B)}{1+R} < \rho < \frac{(\lambda + p)(1-B) + p(A-B)}{1-R}$$

and

$$-t(A,B) < \phi < t(A,B)$$

where t is defined by (4.2).

Let h be a function which maps U onto the angular domain $\{\omega: |\arg\omega| < \frac{\pi}{2}\delta\}$ with h(0)=1. Applying Lemma 2, for this h with $\psi(z)=\frac{1}{-r(z)+\lambda+2p}$, we see that $\operatorname{Re}\{q(z)\}>0$ in U and hence $q(z)\neq 0$ in U. If there exists a point $z_0\in U$ such that the conditions (2.1) and (2.2) are satisfied, then by Lemma 3, we have (2.3) under the restrictions (2.4) and (2.5).

At first, suppose that $q(z_0)^{\frac{1}{r}} = ib$ (b > 0). Then

$$\begin{split} & \arg \Bigg[-\frac{1}{p-\ell} \Bigg(\frac{z_0 \Big(\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) f(z_0) \Big)^{\frac{1}{2}}}{\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) g(z_0)} + \ell \Bigg) \Bigg] \\ &= \arg \Bigg(q(z_0) + \frac{z_0 q'(z_0)}{-r(z_0) + \lambda + 2p} \Bigg) = \frac{\pi}{2} \tau + \arg \bigg(1 + i\ell \tau \Big(\rho e^{i\frac{\pi}{2}\phi} \Big)^{-1} \bigg) \\ &= \frac{\pi}{2} \tau + \tan^{-1} \Bigg(\frac{\ell \tau \sin \frac{\pi}{2} \big(1 - \phi \big)}{\rho + \ell \tau \cos \frac{\pi}{2} \big(1 - \phi \big)} \Bigg) \\ &\geq \frac{\pi}{2} \tau + \tan^{-1} \Bigg(\frac{\tau \cos \frac{\pi}{2} t(A, B)}{\frac{(\lambda + p)(1 - B) + p(A - B)}{1 - B}} + \tau \sin \frac{\pi}{2} t(A, B) \Bigg) = \frac{\pi}{2} \delta, \end{split}$$

Next, suppose that $q(z_0)^{\frac{1}{a}} = -ib$ (b > 0). Applying the same method as the above, we have

$$\begin{split} & \arg \Bigg[-\frac{1}{p-\ell} \Bigg(\frac{z_0 \Big(\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) f(z_0) \Big)'}{\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) g(z_0)} + \ell \Bigg) \Bigg] \\ & \leq -\frac{\pi}{2} \tau - \tan^{-1} \Bigg(\frac{\tau \cos \frac{\pi}{2} t(A,B)}{\frac{(\lambda+p)(1-B)+p(A-B)}{1-B} + \tau \sin \frac{\pi}{2} t(A,B)} \Bigg) = -\frac{\pi}{2} \delta, \end{split}$$

where $\stackrel{4}{>}$ and t(A,B) are given by (4.1) and (4.2), respectively, which contradicts the assumption. This completes the proof of Theorem 3.

Taking $q=2, s=\lambda=\delta=A=1, B=0$ and $\alpha_1=\alpha_2=\beta_1=p$ $(p\in \mathbb{N})$ in Theorem 3, we have the following corollary:

Corollary 3. Let $f(z) \in \sum_{p,m}$. If

$$-\operatorname{Re}\left\{\frac{z(2(p+1)(2p+1)f'(z)+4(1+p)zf''(z)+z^2f'''(z))}{2p(2p+1)g(z)+2(2p+1)zg'(z)+z^2g''(z)}\right\}>\ell\ (0\leq\ell< p),$$

for some $g(z) \in \sum_{p,m}$ satisfying the condition

$$\left| \frac{z(2(p+1)(2p+1)g'(z)+4(p+1)zg''(z)+z^2g'''(z))}{2p(2p+1)g(z)+2(2p+1)zg'(z)+z^2g''(z)} + p \right| < p,$$

then

$$-\operatorname{Re}\left\{\frac{z((2p+1)f'(z)+zf''(z))}{zf'(z)+2pf(z)}\right\} > \ell.$$

Taking $q=2, s=\delta=A=1, \lambda=2, B=0, \alpha_1=p+1$ and $\alpha_2=\beta_1=p$ $(p\in \mathbb{N})$ in Theorem 3, we have the following corollary:

Corollary 4. Let $f(z) \in \sum_{p,m}$. If

$$-\operatorname{Re}\left\{\frac{z(2((p+1))(2p+3)f'(z)+2(2p+3)zf''(z)+z^2f'''(z))}{2(p+1)(2p+1)g(z)+4(p+1)zg'(z)+z^2g''(z)}\right\} > \ell \quad (0 \le \ell < p),$$

for some $g(z) \in \sum_{p,m}$ satisfying the condition

$$\left| \frac{z(2((p+1))(2p+3)g'(z) + 2(2p+3)zg''(z) + z^2g'''(z))}{2(p+1)(2p+1)g(z) + 4(p+1)zg'(z) + z^2g''(z)} + p \right| < p,$$

then

$$-\operatorname{Re}\left\{\frac{z(2(p+1)f'(z)+zf''(z))}{(2p+1)g(z)+zg'(z)}\right\} > \ell.$$

Taking $q=2, s=1, \lambda=\eta-p, m=1-p, \alpha_1=n+p$ and $\alpha_2=\beta_1=\eta (\eta>0, n>-p, p\in \mathbb{N})$ in Theorem 3, we have the following corollary:

Corollary 5. Let $f(z) \in \sum_{p}, \quad 0 < \delta \le 1, \quad 0 \le \ell < p$ and

$$\eta \ge \frac{p(A-B)}{1+B} \ (-1 < B < A \le 1; p \in \mathbb{N}).$$

If

$$\left| \arg \left(-\frac{z \left(I_{n+p-1,\eta+1} f(z) \right)'}{I_{n+p-1,\eta+1} g(z)} - \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \sum_{p,m}$ satisfying the conditon

$$-\frac{z(I_{n+p-1,\eta}g(z))}{I_{n+p-1,\eta}g(z)} \prec p\frac{1+Az}{1+Bz},$$
(4.6)

then

$$\left| \arg \left(-\frac{z \left(I_{n+p-1,\eta} f(z) \right)}{I_{n+p-1,\eta} g(z)} - \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of the equation (4.1) with $\lambda = \eta - p \ (\eta > 0)$.

Taking p = 1 in Corollary 5, we have the following corollary:

Corollary 6. Let $f(z) \in \Sigma$, $0 < \delta \le 1$, $0 \le \ell < 1$ and

$$\eta \ge \frac{A - B}{1 + B} \quad (-1 < B < A \le 1).$$

If

$$\left| \arg \left(-\frac{z \left(I_{n,\eta+1} f(z) \right)'}{I_{n,\eta+1} g(z)} - \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \sum$ satisfying the conditon

$$-\frac{z(I_{n,\eta}g(z))}{I_{n,\eta}g(z)} \prec \frac{1+Az}{1+Bz},\tag{4.7}$$

then

$$\left| \arg \left(-\frac{z \left(I_{n,\eta} f(z) \right)'}{I_{n,\eta} g(z)} - \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\Re \square \mathcal{A} > 1$ is the solution of the equation (4.1) with $\lambda = \eta - 1$ $(\eta > 0)$.

The proof of the next theorem is akin to that of Theorem 3 and so, we omit it.

Theorem 4. Let $f(z) \in \sum_{p,m}, \quad 0 < \delta \le 1, \ \ell > p$ and

$$\lambda \ge \frac{p(A-B)}{1+B} - p \ (-1 < B < A \le 1; p \in \mathbb{N}).$$

If

$$\left| \arg \left(\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda+1,m}(\alpha_1) g(z)} + \ell \right) \right| < \frac{\pi}{2} \delta$$

for some $g(z) \in \sum_{p,q,s}^{\lambda+1,m} (\alpha_1;A,B)$, then

$$\left| \arg \left(\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) g(z)} + \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of equation (4.1).

Theorem 5. Let $f(z) \in \sum_{p,m}, \quad 0 < \delta \le 1, \ 0 \le \ell < p$ and

$$\alpha_1 \ge \frac{p(A-B)}{1+B} \ (-1 < B < A \le 1; p \in \mathbb{N}).$$

If

$$\left| \arg \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) g(z)} - \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \sum_{p,q,s}^{\lambda,m} (\alpha_1; A, B)$, then

$$\left| \arg \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1 + 1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1 + 1) g(z)} - \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of equation (4.1) .

Proof. Let

$$X(z) = \frac{1}{p - \ell} \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1 + 1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1 + 1) g(z)} - \ell \right), \tag{4.8}$$

where X(z) is analytic with X(0) = 1. Using (1.7), we have

$$[-(p-\ell)X(z)-\ell]\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_{1}+1)g(z) = \alpha_{1}\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_{1})f(z) - (\alpha_{1}+p)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_{1})f(z). \tag{4.9}$$

Differentiating (4.9) with respect to z and multiplying by z, we obtain

$$-(p-\ell)zX'(z)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1+1)g(z) + [-(p-\ell)X(z)-\ell]z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1+1)g(z))'$$

$$= \alpha_1 z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z))' - (\alpha_1+p)z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z))'. \tag{4.10}$$

Then, by using (4.8), (4.9) and (4.10), we have

$$\frac{1}{p-?}\left(-\frac{z\left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z)\right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)g(z)}-\ell\right)=X(z)+\frac{zX'(z)}{-j(z)+\alpha_1+p},$$

where

$$j(z) = -\frac{z\left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1 + 1)g(z)\right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1 + 1)g(z)}.$$

The remaining part of the proof is similar to that of Theorem 3 and so we omit it.

Taking $q=2, s=1, \lambda=\eta-p, \quad m=1-p, \alpha_1=n+p$ and $\alpha_2=\beta_1=\eta \quad (\eta>0, n>-p, p\in \mathbb{N})$ in Theorem 5, we have the following corollary:

Corollary 7. Let $f(z) \in \sum_{p,m}, \quad 0 < \delta \le 1, 0 \le \ell < p$ and

$$n \ge \frac{p(A-B)}{1+B} - p \ (-1 < B < A \le 1; p \in \mathbb{N}).$$

If

$$\left| \arg \left(-\frac{z \left(I_{n+p-1,\eta} f(z) \right)}{I_{n+p-1,\eta} g(z)} - \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \sum_{p,m}$ satisfying (4.6), then

$$\left| \arg \left(-\frac{z \left(I_{n+p,\eta} f(z) \right)'}{I_{n+p,\eta} g(z)} - \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of equation (4.1) .

Taking p = 1 in Corollary 7, we have the following corollary:

Corollary 8. Let $f(z) \in \Sigma$, $0 < \delta \le 1, 0 \le \ell < 1$ and

$$n \ge \frac{(A-B)}{1+B} - 1 \ (-1 < B < A \le 1).$$

If

$$\left| \arg \left(-\frac{z \left(I_{n,\eta} f(z) \right)'}{I_{n,\eta} g(z)} - \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \Sigma$ satisfying (4.7), then

$$\left| \arg \left(-\frac{z \left(I_{n+1,\eta} f(z) \right)'}{I_{n+1,\eta} g(z)} - \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of equation (4.1) .

The proof of the next theorem is akin to that of Theorem 5 and so, we omit it.

Theorem 6. Let $f(z) \in \sum_{p,m}$, $0 < \delta \le 1$, $\ell > p$ and

$$\alpha_1 \ge \frac{p(A-B)}{1+B} \ (-1 < B < A \le 1; p \in \mathbb{N}).$$

If

$$\left| \arg \left(\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) g(z)} + \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \sum_{p,q,s}^{\lambda,m} (\alpha_1;A,B)$, then

$$\left| \arg \left(\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1 + 1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m} (\alpha_1 + 1) g(z)} + \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of equation (4.1) .

Theorem 7. Let $f(z) \in \sum_{p,m}$, $0 < \delta \le 1$, $0 \le \ell < p$ and

$$\mu \ge \frac{p(A-B)}{1+B} \ (-1 < B < A \le 1; p \in \mathbb{N}).$$

If

$$\left| \arg \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) g(z)} - \ell \right) \right| < \frac{\pi}{2} \delta,$$

for some $g(z) \in \sum_{p,q,s}^{\lambda,m} (lpha_1;A,B)$, then

$$\left| \arg \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(f)(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(g)(z)} - \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of equation (4.1) .

Proof. Let

$$k(z) = \frac{1}{p - \ell} \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(f)(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(g)(z)} - \ell \right), \tag{4.11}$$

where k(z) is analytic with k(0) = 1. Using (1.9), we have

$$[-(p-\ell)k(z)-\ell]\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(g)(z) = \mu\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)f(z) - (\mu+p)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(f)(z). \tag{4.12}$$

Differentiating (4.12) with respect to z and multiplying by z, we obtain

$$-(p-\ell)zk'(z)\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(g)(z) + [-(p-\ell)k(z)-\ell]z(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1)F_{\mu,p}(g)(z))'$$

$$= \mu z (\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z))' - (\mu + p) z (\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(f)(z))'. \tag{4.13}$$

Then, by using (4.11), (4.12) and (4.13), we have

$$\frac{1}{p-\ell} \left(-\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) g(z)} - \ell \right) = k(z) + \frac{z k'(z)}{-\rho(z) + \mu + p},$$

where

$$\rho(z) = -\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(g)(z)\right)}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(g)(z)}.$$

The remaining part of the proof is similar to that of Theorem 3 and so we omit it.

The proof of the next theorem is akin to that of Theorem 7 and so, we omit it.

Theorem 8. Let $f(z) \in \sum_{p,m}$, $0 < \delta \le 1$, $\ell > p$ and

$$\mu \ge \frac{p(A-B)}{1+B}$$
 (-1 < B < A \le 1; p \in \mathbf{N}).

lf

$$\left| \arg \left(\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) f(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) g(z)} + \ell \right) \right| < \frac{\pi}{2} \delta$$

for some $g(z) \in \sum_{p,q,s}^{\lambda,m} (\alpha_1;A,B)$, then

$$\left| \arg \left(\frac{z \left(\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(f)(z) \right)'}{\mathbf{M}_{p,q,s}^{\lambda,m}(\alpha_1) F_{\mu,p}(g)(z)} + \ell \right) \right| < \frac{\pi}{2} \tau,$$

where $\tau(0 < \tau \le 1)$ is the solution of equation (4.1).

Remark 1. Specializing the parameters p,q,s,m and λ in the above results, we obtain the results for the corresponding operators defined in the introduction.

Remark 2. (i) Putting q=2, s=1, m=1-p, $\alpha_1=\beta_1=a$ $\left(a>0, p\in \mathbb{N}\right)$ and $\alpha_2=1$ in Theorems 3 and 4, respectively, we obtain the results obtained by Cho and Owa [11, Theorems 2.1 and 2.2, respectively]; (ii) Putting q=2, s=1, m=0, $\alpha_1=a, \alpha_2=p=1$ and $\beta_1=a$ $\left(a>0\right)$ in Theorems 3 and 4, respectively, we obtain the results obtained by Cho [8, Theorems 2.1 and 2.2, respectively]; (iii) Putting q=2, s=1, m=1-p, $\alpha_1=a, \alpha_2=1$ and $\beta_1=c$ $\left(a,c\in \mathbb{R}\setminus \mathbb{Z}_0^-, p\in \mathbb{N}\right)$ in the above results, we obtain the results obtained by Aouf et al. [5];

(iv) Putting q=2, s=1, m=1-p, $\alpha_1=c, \alpha_2=p+\lambda$ and $\beta_1=a$ ($a\in \mathbb{R}, c\in \mathbb{R}\setminus \mathbb{Z}_0^-, \lambda>-p, p\in \mathbb{N}$) in Theorem 4, we obtain the results obtained by Lashin [14, Theorem 2.2] .

References

- [1] R. Aghalary, Some properties of a certain family of meromorphically univalent functions defined by integral operator, Kyungpook Math. J., 48 (2008), 379-385.
- [2] M. K. Aouf, New criteria for multivalent meromorphic starlike functions of order alpha, Proc. Japan Acad., Ser. A, Math. Sci., 69 (1993), 66-70.
- [3] M. K. Aouf, A new criterion for meromorphically p-valent convex functions of order alpha, Math. Sci. Research Hot-Line, 1 (1997), no. 8, 7-12.
- [4] M.K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput. Math. Appl., 55 (2008), 494-509.
- [5] M.K. Aouf, A. Shamandy, A.O. Mostafa and F.Z. El-Emam, Argument estimates of certain meromorphically *P* -valent functions associated with a family of linear operator, Math. Slovaca, 61 (2012), no. 6, 907-920.
- [6] M. K. Aouf and N.- E. Xu, Some inclusion relationships and integral-preserving properties of certain subclasses of p-valent meromorphic functions, Comput. Math. Appl., 61 (2011), 642-650.
- [7] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
- [8] N. E. Cho, Argument estimates of certain meromorphic functions, Comm. Korean Math. Soc., 15 (2000), no. 2, 263-274.
- [9] N. E. Cho and I. H. Kim, Inclusion properties of certain classes of meromorphic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 187 (2007), 115-121.
- [10] N. E. Cho and K. I. Noor, Inclusion properties for certain classes of meromorphic functions associated with the Choi-Saigo-Srivastava operator, J. Math. Anal. Appl., 320, (2006), 779-786.
- [11] N. E. Cho and S. Owa, Argument estimates of meromorphically multivalent functions, J. Inequal. Appl., 5 (2000), 419-432.
- [12] P. Eenigenberg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot--Bouquet differential subordination, General Inequal., 3 (1983), 339-348.
- [13] V. Kumar and S. L. Shukla, Certain integrals for classes of p-valent meromorphic functions, Bull. Austral. Math. Soc., 25 (1982), 85-97.
- [14] A. Y. Lashin, Argument estimates of certain meromorphically p-valent functions, Soochow J. Math., 33 (2007), no. 4, 803-812.
- [15] J.-L. Liu, A linear operator and its applications on meromorphic p-valent functions, Bull. Inst. Math. Acad. Sinica, 31 (2002), no. 1, 23-32.

- [16] J.-L. Liu and H. M. Srivastava, Classes of meromorphically multivalent functions associated with generalized hypergeometric function, Math. Comput. Modelling, 39 (2004), 21-34.
- [17] A. O. Mostafa, Applications of differential subordination to certain subclasses of p-valent meromophic functions involving certain operator, Math. Comput. Modelling, 54 (2011), 1486-1498.
- [18] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157-171.
- [19] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad., Ser. A, Math. Sci., 69 (1993), 234-237.
- [20] J. Patel and A. K. Patil, On certain subclasses of meromorphically multivalent functions associated with the generalized hypergeometric function, J. Inequal. Pure Appli. Math., 10 (2009), no. 1, Art 13, 1-33.
- [21] H. Silverman and E. M. Silvia, Subclasses of starlike functions subordinate to convex functions, Canad. J. Math., 37 (1985), 48-61.
- [22] H. M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chichester, John Wiley and Sons, New York, Chichester, Brisbane, Toronto, 1985.
- [23] D. -G. Yang, Certain convolution operators for meromorphic functions, South. Asian Bull. Math., 25 (2001), 175-186.
- [24] S.-M. Yuan, Z. -M. Liu and H. M. Srivastava, Some inclusion relationships and integral-preserving properties of certain subclasses of meromorphic functions associated with a family of integral operators, J. Math. Anal. Appl., 337 (2008), 505-515.