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ABSTRACT 

The response of a ship model with non-linearly coupled pitch and roll modes under modulated external and 

parametric solved and studied. The active control is applied to reduce the vibration of the system . The method of multiple 

scale perturbation technique is applied to obtain the periodic response equation near the primary resonance in the 

presence of internal resonance of the system. The objective of this research is focused on the stability of this periodic 

solution, dynamical properties and chaotic response. The stability of the obtained numerical solution is studied using both 

frequency response equation and phase-plane methods. The effects of some parameters on the vibrating system are 

investigated and reported in this paper. 
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1- INTRODUCTION 

Nayfeh and others [1- 4] studied the non-stationary responses of a non-linearly two-degree-of-freedom system 

under non-stationary excitation. The basic two-degree-of freedom ship model under a sinusoidal excitation with either a 

slowly varying amplitude or frequency . Nayfeh, Mook and Marshall’s study [5-7]. They used first order multiple time scale 

method to analyze this system of ship model and a saturation phenomenon of the second mode has been reported. The 

authors [8, 9] have studied the same saturation phenomenon theoretically and experimentally. Many investigators have 

studied chaos in non-linear multi degree-of-freedom systems with internal resonance. For instance, quadratically coupled 

oscillators with 1:2 internal resonance [10,11], a harmonically excited mechanical system with one to one internal 

resonance [12], a parametrically and externally excited dynamical system with2:1 internal resonance [13,14] have been 

studied. Davis and Pan studied a system of a ship model using both first order multiple time scale and averaging method, 

and a more accurate analytical solution and bifurcation diagrams are obtained and reported [15-17]. They also studied the 

same system of ship model, when it has both a 2:1 internal resonance. Furthermore, the case of periodic response and 

chaotic response of the same system under modulated excitation has been studied. Also, the stability of the two modes of 

a ship motions near primary resonance in the presence of internal resonance has been studied and reported [10, 14, 17]. 

The stability of the numerical solution is investigated using both phase plane methods and frequency response equations. 

The stability of the proposed solution is determined applying Lyapunov’s first method and the stability of the obtained 

numerical solution of the considered system is studied applying Runge-Kutta method [18,19]. Eissa and El-Bassiouny [20] 

construct a second-order uniform expansion of the non-linear rolling response of a ship in regular beam seas by method 

of multiple time scales. The analysis took into consideration linear, quadratic, cubic, quintus, and seven terms in the 

polynomial expansion of the relative roll angle. Eissa, El-Ganaini andHamed [21] Saturation phenomena may occur in 

non-linear vibrating systems. This phenomena is very useful in suppressing the undesired vibrations and saturation is 

investigated in a non-linear oscillating system subject to multi-parametric excitation.  Kamel [22] studied the response of a 

two-degree-of-freedom system with quadratic coupling under a modulated amplitude sinusoidal excitation is studied and 

solved..  EL-Sayed, Kamel and Eissa [23] studied an application of passive vibration control to a non-linear spring 

pendulum system simulating a ship’s roll motion. This leads to a four-degree-of-freedom (4-DOF) system subjected to 

multi external and parametric excitations. Sayed and Hamed [24] studied deals with the response of a two- degree-of-

freedom(2DOF) system with quadratic coupling under parametric and harmonic excitations. The method of multiple scale 

perturbation technique is applied to solve the nonlinear differential equations and obtain approximate solutions up to and 

including the second order approximations.  

Sayed and Kamel [25, 26] studied the effect of different controllers on the vibrating system and the saturation 

control of a linear absorber to reduce vibrations due to rotor blade flapping motion. Kamel, El-Ganaini and Hamed[27] the 

coupling of two non-linear oscillators of the main system and absorber representing ultrasonic cutting process is 

investigated. This leads to a two-degree-of-freedom system subjected to multi-external excitation force. Dostal, Kreuzer 

and Navaratnam[28]  studied Multi-degree-of-freedom ship motion and ship stability in random seas are of major interest 

for the development of new advanced intact stability criteria and improve the safety of new ship designs, but the results 

are relevant also for other engineering systems involving multiple scales.  

We focus on roll-pitch and roll-heave motion in random seas. The random wave excitation is modeled by a non-

white stationary process. This process is derived from a spectral description of the random seaway using traveling 

effective wave. The aim of this work is to control the main system behavior at simultaneous primary and internal 

resonance condition, where the system damage is probable. Multiple scale perturbation method is applied to obtain the 

solution up to the second order approximations and Some of resonance cases are investigated. The effects of natural and 

excitation frequencies on the response of the system are investigated and discussed. 

2-  MATHEMATICAL MODELING 
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Fig. 1 a   The body - fixed coordinates system Ox y z .  b  coordinates system Gxyz and Ox y zo o o o o o  

In this paper, we consider a ship model with non linear coupled pitch and roll modes subjected to a sinusoidal harmonic 

excitation and parametric excitations [24]. The nonlinear system can be written as: 

2

1 1 1 1 1 2 12 cos sinoX X X XY G t XF t T                                                                                            (1a) 

2 2

2 2 2 1 2 2 22 cos sinoY Y Y X F t YF t T                                                                                               (1b) 

where X  and Y  are the roll and pitch mode amplitudes, 1 and 2  the modal damping coefficients, 1 and 2  the 

natural angular frequencies of the roll and pitch modes, and   1, 2 the excitations or wave frequencies. oG , 1F  

and oF , 2F  are the excitation force amplitudes of the roll and pitch modes, 1  and 2  non linear coefficients. 

3 3

1 1 2 2,T G X and T G Y       are  the absorbers  of the system. All the coefficients in the above equations are 

complicated functions of the various ship moments of inertia, fluid parameters, boat speed, etc. The linear viscous 

damping forces, exciting forces and controller are assumed to be  

                              ( 1,2)n n n n n n o o o oF F G G F F n               

where  is a small perturbation parameter and  0 1   . 1G  and 2G are gains of the absorbers.  

2.1-Perturbation analysis 

The method of multiple time scale is applied to determine a first order uniform expansion for the solution of equations (1a) 

and (1b) as in the form: 

2 3 4

1 1 1 2 1 3 1( , ) ( , ) ( , ) ( , ) ( )( , )       o o o o oT x T x T x T OtX x T T T T                                                (2a) 

2 3 4

1 1 1 2 1 3 1( , ) ( , ) ( , ) ( , ) ( )( , )      o o o o oT y T y T y T OtY y T T T T                                                  (2b) 

where ε is a small perturbation parameter, 1,oT t T t    are fast and slow time scales respectively, and the time 

derivatives became  

2
2 2 2 2

1 2 1 1 22
 , 2 ( 2 ) o o o o

d d
D D D D D D D D D

dt dt
                                                                                (3) 

Substituting equations (2a),(2b) and (3) in to equations (1a) and (1b) and equating the coefficients of the same power of   

in both sides, we obtain   

2 2

1( ) 0o oD x                                                                                                                                                             (4a) 

2 2

2( ) 0o oD y                                                                                                                                                             (4b) 
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2 2 3

1 1 1 1 1 1 2 1 0 1( ) 2 2 ( )( ) sin ( ) coso o o o o o o o o o o oD x D D x D x D x D y x F t G D x G t              (5a) 

2 2 2 3

2 1 1 2 2 1 2 2 2 0 0( ) 2 2 ( ) cos sin ( )o o o o o o o o oD y D D y D y D x F t y F t G D y                        (5b)                                                                                                               

2 2 2 2

1 2 1 1 1 1 1 1 1 1 1 1 1( ) 2 2 ( ) (( )( ) 3 ( ) ( )o o o o o o o o o o o oD x D x D D x D x D x D x D y G D x D x D x                                

1 1 1 1 1 2( )( ) +( )( ) ( )( )) sino o o o o o o o oD x D y D y D x D y D x x F t                                              (6a)                                                                              

2 2 2

2 2 1 1 1 2 1 1 2 1 1 1 2 2( ) 2 2 ( ) 2 ( )( ) sino o o o o o o o oD y D y D D y D y D y D x D x D x y F t             

                      
2

2 1 13 ( ) ( )o o o oG D y D y D y                                                                                                               (6b) 

2 2 2

1 3 1 1 1 2 1 2 1 1 1 1 1 1 1( ) 2 2 ( ) (( ) ( )o o o o o o oD x D x D D x D x D x D x D x D y D y            

                  
2

2 1 1 2 1 1 2 1 2 1 1 1 +( )( ) ( )( ))+ sin 3 (( )( )o o o o o o o o o oD x D y D y D y D x D x x F t G D x D x D x       

                     
2

2 1 1( ) ( ))o o oD x D x D x                                                                                                                      (7a) 

2 2 2 2

2 3 1 1 1 2 2 2 1 1 2 1 1 2 1 1( ) 2 2 ( ) (( ) +2( )( ))o o o o o o o oD y D y D D y D y D y D x D x D x D x D x           

                     
2 2

2 2 2 2 1 1 2 1 1+ sin 3 (( )( ) +( ) ( ))o o o o o o oy F t G D y D y D y D y D y D y                                    (7b) 

The general solution of equations (4a) and (4b) are given by 

1 1

1 1 1( , ) ( ) ( )   o oi T i T

o o o ox T T A T e A T e
  

                                                                                                               (8a) 

2 2

1 1 1( , ) ( ) ( )  o oi T i T

o o o oy T T B T e B T e
  

                                                                                                               (8b) 

where A ,o oB  are complex function in 1T  and cc represents the complex conjugate of the preceding terms. Substituting 

equations (8a) and (8b) in to equations (5a) and (5b), and eliminating the secular terms, then the general solution 

obtained as 

1 1 1 1 2 1 2 2 13 ( ) ( ) ( )

1 1 1 2 3 4 5 6( , )  o o o o o oi T i T i T i T i T i T

ox T T C e C e C e C e C e C e
        

       

2 1( )

7               oi T
C e cc

 
                                                                                                                                 (9a) 

2 2 1 1 2 2 2 23 2 ( ) ( )

1 1 1 2 3 4 5 6( , ) o o o o o oi T i T i T i T i T i T

oy T T C e C e C e C e C e C e
                   

  2 2( )

6 7               oi T
C e C cc

                                                                                                                            (9b) 

where  and  ( 1,2,...,7)i iC C i   are complex function in 1T , cc are complex conjugate. Similarly, Substituting from 

equations (8a), (8b), (9a) and (9b) into equations (6a) and (6b) we get 

1 1 1 1 1 2 1 23 5 ( ) ( )

2 1 1 2 3 4 5 6( , ) +  o o o o o oi T i T i T i T i T i T

ox T T N e N e N e N e N e N e
       

      

        1 2 1 2 1 2 1 2 1 2( 2 ) ( 2 ) ( 3 ) ( 3 ) (3 )

7 8 9 10 11      + o o o o oi T i T i T i T i T
N e N e N e N e N e

             
     

        1 2 1 2 1 2 1 1 1 1(3 ) ( ) ( ) ( ) ( )

12 13 14 15 16      + o o o o oi T i T i T i T i T
N e N e N e N e N e

         
     

        1 1 1 1 1 2 1 2 2 1( 2 ) ( 2 ) ( ) ( ) ( )

17 18 19 20 21     o o o o oi T i T i T i T i T
N e N e N e N e N e

           
      

        
2 1 2 1 2 1 2 1 2 1( ) ( 3 ) ( 3 ) (2 ) (2 )

22 23 24 25 26      + +   o o o o oi T i T i T i T i T
N e N e N e N e N e
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        2 1 2 2 1 2 2 1 2 2 1 2( ( )) ( ( )) ( ( )) ( ( ))

27 28 29 30     o o o oi T i T i T i T
N e N e N e N e

               
    cc  (10a)                                          

 2 2 2 1 1 1 23 5 2 4 (2 )

2 1 1 2 3 4 5 6( , )   o o o o o oi T i T i T i T i T i T

oy T T M e M e M e M e M e M e
      

       

1 2 1 2 1 2 1 2(2 ) 2 ( ) 2 ( )

7 8 9 10 11         o o o o oi T i T i T i T i T
M e M e M e M e M e

       
      

1 2 1 2 1 1 1 1 1 2( ) ( ) ( ) ( ) ( 2 )

12 13 14 15 16    o o o o oi T i T i T i T i T
M e M e M e M e M e

          
      

1 2 2 1 2 1 2 2 2 2( 2 ) ( 2 ) ( 2 ) ( ) ( )

17 18 19 20 21      o o o o oi T i T i T i T i T
M e M e M e M e M e

            
      

2 2 2 2 2 2 2 2( 3 ) ( 3 ) (2 ) (2 )

22 23 24 25 26       o o o oi T i T i T i T
M e M e M e M e M cc

         
                     (10b) 

where  ( 1,2,...,30)and  ( 1,2,...,26)m iN m M i   are complex functions in 1T , cc are complex conjugates. 

Similarly, substituting from equations (8a), (8b), (9a), (9b), (10a) and (10b)in to equations (7a) and (7b) we get,   

1 1 1 1 1 13 5 7 2

3 1 1 2 3 4 5 6( , ) o o o o o oi T i T i T i T i T i T

ox T T w e w e w e w e w e w e
     

       

1 2 1 2 1 2 1 2( ) ( ) ( 2 ) ( 2 )

7 8 9 10               o o o oi T i T i T i T
w e w e w e w e

         
     

1 2 1 2 1 2 1 2( 3 ) ( 3 ) ( 4 ) ( 4 )

11 12 13 14               o o o oi T i T i T i T
w e w e w e w e

           
     

1 2 1 2 1 2 1 2( 5 ) ( 5 ) ( 6 ) ( 6 )

15 16 17 18               o o o oi T i T i T i T
w e w e w e w e

           
     

1 2 1 2 1 2 1 2(3 ) (3 ) (3 2 ) (3 2 )

19 20 21 22               o o o oi T i T i T i T
w e w e w e w e

         
     

1 2 1 2 1 2 1 23 ( ) 3 ( ) (5 ) (5 )

23 24 25 26               o o o oi T i T i T i T
w e w e w e w e

       
     

1 2 1 2 1 2 1 2( ) ( ) ( 2 ) ( 2 )

27 28 29 30               o o o oi T i T i T i T
w e w e w e w e

         
     

1 1 1 1 1 1 1 1( ) ( ) ( 2 ) ( 2 )

31 32 33 34               o o o oi T i T i T i T
w e w e w e w e

         
     

1 1 1 1 1 1 1 1( 3 ) ( 3 ) ( 4 ) ( 4 )

35 36 37 38               o o o oi T i T i T i T
w e w e w e w e

           
     

1 2 1 2 1 2 1 2( ) ( ) ( 2 ) ( 2 )

39 40 41 42               o o o oi T i T i T i T
w e w e w e w e

         
     

1 2 1 2 1 1 1 1( 3 ) ( 3 ) (2 ) (2 )

43 44 45 46               o o o oi T i T i T i T
w e w e w e w e

         
     

2 1 2 1 2 1 2 1( ) ( ) ( 3 ) ( )

47 48 49 50              o o o oi T i T i T i T
w e w e w e w e

        
     

2 1 2 1 2 1 2 1( 5 ) ( 5 ) (2 ) (2 )

51 52 53 54               o o o oi T i T i T i T
w e w e w e w e

         
     

2 1 2 1 2 1 2 1(2 3 ) (2 3 ) (3 ) (3 )

55 56 57 58               o o o oi T i T i T i T
w e w e w e w e

         
     

                      1 1 2 1 1 2 1 1 2 1 1 2( ( )) ( ( )) ( ( )) ( ( ))

59 60 61 62
o o o oi T i T i T i T

w e w e w e w e
               

     

                      1 1 2 1 1 2 1 1 2 1 1 2( ( 2 )) ( ( 2 )) ( ( 2 )) ( ( 2 ))

63 64 65 66
o o o oi T i T i T i T

w e w e w e w e
                   

     

                      1 1 2 1 1 2 1 1 2 1 1 2( (2 )) ( (2 )) ( (2 )) ( (2 ))

67 68 69 70
o o o oi T i T i T i T

w e w e w e w e
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                  2 1 2 2 1 2 2 1 2 2 1 2( ( )) ( ( )) ( ( )) ( ( ))

71 72 73 74
o o o oi T i T i T i T

w e w e w e w e
               

     

                 2 1 2 2 1 2 2 1 2 2 1 2( ( 2 )) ( ( 2 )) ( ( 2 )) ( ( 2 ))

75 76 77 78
o o o oi T i T i T i T

w e w e w e w e
                   

     

                 2 1 2 2 1 2 2 1 2 2 1 2( ( 3 )) ( ( 3 )) ( ( 3 )) ( ( 3 ))

79 80 81 82
o o o oi T i T i T i T

w e w e w e w e
                   

     

                 2 1 2 2 1 2 2 1 2 2 1 2( (3 )) ( (3 )) ( (3 )) ( (3 ))

83 84 85 86
o o o oi T i T i T i T

w e w e w e w e
               

     

                 2 1 2 2 1 2 2 1 2 2 1 2(2 ( )) (2 ( )) (2 ( )) (2 ( ))

87 88 89 90
o o o oi T i T i T i T

w e w e w e w e
               

     

                 1 2 1 1 2 1 1 2 1 1 2 1(( ) ) (( ) ) (( ) ) (( ) )

91 92 93 94
o o o oi T i T i T i T

w e w e w e w e
           

     

                 1 2 1 1 2 1 1 2 1 1 2 1(( ) 2 ) (( ) 2 ) (( ) 2 ) (( ) 2 )

95 96 97 98 o o o oi T i T i T i T
w e w e w e w e

               
     

                 1 2 2 1 2 2 1 2 2 1 2 2(( ) ) (( ) ) (( ) ) (( ) )

99 100 101 102
o o o oi T i T i T i T

w e w e w e w e
           

    +cc                   (11a) 

2 2 2 2 2 22 3 5 6 7

3 1 1 2 3 4 5 6( , ) o o o o o oi T i T i T i T i T i T

oy T T Z e Z e Z e Z e Z e Z e
     

       

  1 1 1 1 1 22 4 6 2

7 8 9 10 11 12                + o o o o o oi T i T i T i T i T i T
Z e Z e Z e Z e Z e Z e

     
      

2 1 2 1 2 1 22 ( 2 ) ( 2 ) ( 3 )

13 14 15 16                + o o o oi T i T i T i T
Z e Z e Z e Z e

         
    

 1 2 1 2 1 2 1 2( 3 ) ( 4 ) ( 4 ) (2 )

17 18 19 20               o o o oi T i T i T i T
Z e Z e Z e Z e

          
     

 1 2 1 2 1 2 1 2(2 ) 2 ( ) 2 ( ) (2 3 )

21 22 23 24               o o o oi T i T i T i T
Z e Z e Z e Z e

        
     

  1 2 1 2 1 2 1 2(2 3 ) (2 4 ) (2 4 ) (4 )

25 26 27 28               o o o oi T i T i T i T
Z e Z e Z e Z e

          
     

   1 2 1 2 1 2 1 1(4 ) 2 (2 ) 2 (2 ) ( )

29 30 31 32               o o o oi T i T i T i T
Z e Z e Z e Z e

       
     

  1 1 1 1 1 1 1 1( ) ( 2 ) ( 2 ) ( 3 )

33 34 35 36              o o o oi T i T i T i T
Z e Z e Z e Z e

          
     

  1 1 1 2 1 2 1 2( 3 ) ( 2 ) ( 2 ) ( 3 )

37 38 39 40              o o o oi T i T i T i T
Z e Z e Z e Z e

           
     

   1 2 1 2 1 2 1 2( 3 ) ( 4 ) ( 4 ) (2 )

41 42 43 44             o o o oi T i T i T i T
Z e Z e Z e Z e

          
     

   1 2 2 1 2 1 2 1(2 ) ( 2 ) ( 2 ) ( 4 )

45 46 47 48             o o o oi T i T i T i T
Z e Z e Z e Z e

          
     

   2 1 2 2 2 2 2 2( 4 ) ( ) ( ) ( 2 )

49 50 51 52             o o o oi T i T i T i T
Z e Z e Z e Z e

         
     

    2 2 2 2 2 2 2 2( 2 ) ( 3 ) ( 3 ) ( 5 )

53 54 55 56             o o o oi T i T i T i T
Z e Z e Z e Z e

           
     

   2 2 2 1 2 1 2 2( 5 ) 2 ( ) 2 ( ) (2 )

57 58 59 60             o o o oi T i T i T i T
Z e Z e Z e Z e

        
     

   2 2 2 2 2 2 2 2(2 ) (2 3 ) (2 3 ) (3 )

61 62 63 64             o o o oi T i T i T i T
Z e Z e Z e Z e

         
     

     2 2 1 1 2 1 1 2 1 1 2(3 ) ( ( )) ( ( )) ( ( ))

65 66 67 68             o o o oi T i T i T i T
Z e Z e Z e Z e

             
     

       1 1 2 1 1 2 1 1 2 1 1 2( ( )) ( ( 2 )) ( ( 2 )) ( ( 2 ))

69 70 71 72            o o o oi T i T i T i T
Z e Z e Z e Z e
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 1 1 2 1 1 2 1 1 2 1 1 2( ( 2 )) ( (2 )) ( (2 )) ( (2 ))

73 74 75 76            o o o oi T i T i T i T
Z e Z e Z e Z e

                
     

                1 1 2 2 1 2 2 1 2 2 1 2( (2 )) ( ( 3 )) ( ( 3 )) ( ( 3 ))

77 78 79 80
o o o oi T i T i T i T

Z e Z e Z e Z e
                  

     

  2 1 2 2 1 2 2 1 2 2 1 2( (2 )) ( (2 )) ( (2 )) ( (2 ))

82 83 84 85           o o o oi T i T i T i T
Z e Z e Z e Z e

               
     

   2 1 2 2 1 2 2 1 2 2 1 2( 2( )) ( 2( )) ( 2( )) ( 2( ))

86 87 88 89          o o o oi T i T i T i T
Z e Z e Z e Z e

               
     

1 2 2 1 2 1 2( ) ( ) ( 2 ) ( 2 )

90 91 92 93           o o o oi T i T i T i T
Z e Z e Z e Z e

        
     

    1 2 1 1 2 1 1 2 1 1 2 1(( ) ) (( ) ) (( ) ) (( ) )

94 95 96 97        o o o oi T i T i T i T
Z e Z e Z e Z e

           
     

               1 2 2 1 2 2 1 2 2 1 2 2(( ) 2 ) (( ) 2 ) (( ) 2 ) (( ) 2 )

98 99 100 101
o o o oi T i T i T i T

Z e Z e Z e Z e
               

     

               102Z cc                                                                                                                                                      (11b) 

where  ( 1,2,...,103)and  ( 1,2,...,102)m iw m Z i   are complex functions in 1T , cc are complex conjugates.   

From above-proposed solution, the reported resonance cases are :  

(a) Trivial resonance:     1 2 1 2 0          

(b) Primary resonance:  1 1 2 2,          

(c)  Internal resonance:  (1) 21  n     (2) 12  n  , n=1, 2,3,4,5        (3) 21  mn  , n=2, 3, m=3, 5       

(d) Sub-harmonic resonance:   (1)  1 1n        (2) 1 2n   , n=2, 3, 4, 5     (3) 2 1         m        

(4) 2 2m   , m=2, 4, 6 

(e)  Combined resonance:  (1) 1 1 2               (2) 1 1 22( )              (3) 1 1 2(2 3 )      

  (4) 1 1 2( 2 )          (5) 1 1 2(2 )          (6) 2 1 22 (2 )       (7) 2 1 22( )           

  (8) 2 1 2(4 )              (9) 2 1 2(2 )     

 (f) Simultaneous resonance:  

Any combination of the above resonance cases is considered as a simultaneous resonance one.   

2.2-Stability Analysis 

Stability analysis is limited to the first order approximation. Then all the solution coefficients are functions in 1T  only. 

Applying an absorber to the main system at internal resonance 2 12   . Introducing the detuning parameters 1  and 

2  in the primary and internal resonance to convert the small-divisor terms into the secular terms according to 

   1 1 1     and  2 1 22                                                                                                                     (12) 

Eliminating the secular terms of both 1x  and 1y  of equations (5a) and (5b), leads to the solvability conditions, and noting 

that oA and  oB are functions in 1T only, we get  

1 1 1 2( )3 2

1 1 1 1 1 1 1 2[ 2 ( ) 3 ] 0
2

o o oi T i T i To
o o o o o o

G
i D A A iG A A e e A B e

   
                            (13a) 
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2 123 2 2 2

2 1 2 2 2 2 1[ 2 ( ) 3 ] + 0o oi T i T

o o o o oi D B B iG B B e A e
 

                                                               (13b) 

  Putting the polar form 

                     1 1 2 1( ) ( )

1 1 2 1

1 1
( )  ,  ( )     

2 2

i T i T

o oA a T e B a T e
 

                                                                                      (14)                                               

where 1 2 1 , ,a a  and 2 are real. Substituting Equations (14) into equations (13a), (13b), and separating real and 

imaginary parts we get the following 

2 3 1
1 1 1 1 1 1 1 2 1 2 2

1

3
sin sin

8 2 4

oG
a a G a a a


         


                                                                                (15a) 

1
1 1 2 1 2 2 1

1

cos cos
4 2

oG
a a a


     


                                                                                                                 (15b) 

2 2
2 3 2 1 1

2 2 2 2 2 2 2

2

3
sin

8 4

a
a a G a

 
      


                                                                                                         (15c) 

2 2

2 1 1
2 2 2

2

cos
4

a
a

 
   


                                                                                                                                         (15d) 

where 1 2 1 2 1( 2 )T      and 2 1 1 1T    .  For steady state solutions,  1 2a a   
1 2θ θ 0,     and 

equations (15a), (15b), (15c) and (15d) becomes 

2 3 1
1 1 1 1 1 1 2 1 2 2

1

3
0 sin sin

8 2 4

oG
a G a a a


        


                                                                                 (16a) 

1
1 1 2 1 2 2 1

1

cos cos
4 2

oG
a a a


     


                                                                                                                (16b) 

2 2
2 3 2 1 1

2 2 2 2 2 2

2

3
0 sin

8 4

a
a G a

 
     


                                                                                                           (16c) 

2 2

2 1 1
1 2 2 2

2

(2 ) cos
4

a
a

 
    


                                                                                                                        (16d) 

Squaring equations (16a), (16b) and adding the result, we get the corresponding frequency response equations (FRE) are 

2
2 2 2 3 2 2 2 2 2 1 2
1 1 1 1 1 1 1 1 2 1 2 1 22

1 1

3 1
( ) 0

8 4 16

o oG G
a a G a a a a a

 
          

 
                                                     (17) 

Similarly, from equations (16c)and (16d), we get 

2 2
2 2 2 3 2 22 1 1
2 1 2 2 2 2 2 2

2

3
(2 ) ( ) ( ) 0

8 4

a
a a G a

 
       


                                                              (18) 

 From equations (17) and (18) we have the following cases: 

   (i) Case 1 1 2a 0,  a 0               
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2
2 2 2 3 2

1 1 1 1 1 1 1 2

1

3
( ) 0

8 4

oG
a a G a      


                                                                                                           (19) 

(ii)   Case 2 
1 2 a 0,  a 0   

              
2 2 2 3 2

2 1 2 2 2 2 2 2

3
(2 ) ( ) 0

8
a a G a                                                                                                   (20) 

(iii) Case 3 1 2 a 0,  a 0   represented by equations (17) and (18).The steady state solution of the obtained fixed 

points will be determined as follows:  

Let oA and oB  Expressed in Cartesian form as following: 

        1 1 2 1

0 1 1 1 0 1 2 2

1 1
( ) ( )  , ( ) ( )

2 2

i T i T
A T p iq e B T p iq e

 
                                                                          (21) 

where np  and nq , (n=1,2) are real values and. Inserting equations (19) in to the linear form of equations (13a) ,(13b)  

and separating real and imaginary parts, the following system of equations is obtained as: 

1 1 1 1 1 0p p q                                                                                                                                   (22a)     

  1 1 1 1 1 0q q p                                                                                                                                   (22b) 

 2 2 2 2 2 0 p p q                                                                                                                                   (22c)         

 2 2 2 2 2 0q q p                                                                                                                                  (22d) 

where
1 2 1 2

1 2 1 2

1 2 1 2

          ,   , ,   
   

   
   

                   

The stability of linear solution is investigated from the zero characteristics matrix 

              

1 1

1 1

2 2

2 2

0 0

0 0
0

0 0

0 0

   

   


   

   

                                           

The eigen values are given by  

                       
4 3 2

1 2 3 4 0r r r r          

where,         
2 2 2 2

1 1 2 2 1 2 1 2 1 22( ),   4r r              

                    
2 2 2 2 2 2

3 1 2 1 2 2 1 1 2 4 1 1 2 22 ( ) 2 2 , ( )( )r r                 

 According to the Routh-Hurwitz criterion, the linear solution is stable if the following are satisfied  

      
2

1 1 2 3 3 1 2 3 1 4 40,      0,      ( ) 0,      0r r r r r r r r r r r        

4- RESULTS AND DISCUSSION   

 A non –linear control low is proposed to suppress the vibration of the pitch-roll ship under modulated external and 

parametric excitation. The system is modeled by two second order non-linear ordinary differential equations and the 
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control is based on cubic velocity feedback. The numerical solutions are given by Runge–kutta 4th
order method at non 

resonance case as shown in Fig. 2, which consider as basic case. From this figure it can be seen that the amplitudes of 

roll(x)and pitch (y)are about 0.02 and 0.012 respectively.                                                                    

    

   

Fig.2. The Plot  of basic case 

4.1- Effect of parameters   

i) For the positive damping coefficients the amplitudes of roll and pitch are monotonic decreasing functions on 

1 2 and    respectively as shown in Figs. 3a, 3b, and more increasing values of 1 2 and    leads to saturation 

phenomena. 

ii) From Figs. 3c, 3d, we can see that the steady state amplitude of the roll and pitch are monotonic decreasing functions 

of the nonlinear parameters 1 2 and   . 

iii) The steady state amplitude of the roll and pitch are monotonic increasing functions of the excitation force amplitude 

1 2G  , F , Fand F ,  o o which leads to the system is becomes un stable. as shown in Figs. 3e, 3f, 3g, 3h, and 3i 

respectively. 

 4.2- Effect of the control  

From Figs. 3j and 3k, the steady state amplitude of the roll and pitch are monotonic decreasing functions of the gains of 

control 1 2G  and G  respectively. but more increasing of values 1 2G  and G  leads to saturation phenomena. 
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Fig.3. Effects of parameters 
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4.3- Resonance cases 

All resonance cases of the system which are studied numerically obtain the worst case. From table 1, we find that the 

worst resonance case is simultaneous primary resonance
1 1 2 1, 2      , so we take this case to study the effect 

of control on the system  Fig.4, shows the steady state amplitudes of the system at 1 1 2 1, 2      , without 

control ( 1 2G  = G 0 ) , from this figure we see that the amplitude of the roll is increased to about 0.67 (34 times) and 

the amplitude of the pitch is increased to about 0.064(6times ) respectively, of the basic case which  shown in Fig.2. 

Fig.5 illustrate the response of the system with control, which shows that the steady state of the roll is decreased to about 

0.14 and steady state of the pitch is decreased to about 0.005, which means that the control are effective and 
aE is 4.7 

and 12.8 respectively. 

 

                    

Fig. 4.  Shows that the steady state amplitude without control at simultaneous   primary resonance     

1 1 2 1, 2                                                 

  

 Fig. 5. The response for the system with absorber at the simultaneous primary resonance 1 1 2 1, 2      
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To summaries the worst resonance cases with and without absorber                           

Table 1. Summary of worst resonance case 

Cases Without control With control 

 
aE  

x 

 

aE  

y 

 

Remarks 

x y x y 

1 1    0.63 0.037 0.14 0.0368 4.5 1 Limit cycle 

1 2    0.046 0.3 0.0458 0.10 1 3 Limit cycle 

1 2 2( ) / 4   

 

0.99 0.020 0.22 0.012 4.5 1.7 Limit cycle 

1 1 2 1,     
 

0.63 0.0358 0.14 0.0352 4.5 1 Limit cycle 

1 1 2 1,     
 

0.62 0.33 0.147 0.116 4.2 2.8 Limit cycle 

1 1 2 1, 2     

 

0.67 0.064 0.14 0.005 4.7 12.8 Multi Limit 

cycle 

1 1 1 2, 3 / 4     

 

0.65 0.018 0.14 0.012 4.6 1.5 Limit cycle 

1 1 2 2, 3 / 2     

 

0.63 0.014 0.147 0.002 4.3 7 Limit cycle 

2 1 2 1, 2     

 

0.048 0.037 0.014 0.0112 3.4 3.3 Limit cycle 

1 1 2 1

2 1

,

,

     

  

 

0.63 0.33 0.136 0.12 4.6 2.75 Limit cycle 

 

4.4- Frequency response curves 

The frequency response equations 17-20 are nonlinear equations of the amplitudes of the roll ( 1a ) and the pitch ( 2a ) 

against the detuning parameters 1 2,  , which solved numerically as shown in Figs. (6-8) respectively. From these 

figures we find the amplitude of the roll is monotonic decreasing functions of the damping coefficient 1 and natural 

frequency 1ω  and the nonlinear parameter 1α and the gain 1G  as shown in Figs. 6a, b, c and Figs. 8a, b, c. But the 

steady state amplitude of the roll( 1a )  is monotonic increasing function in the excitation amplitude Go  as shown in Figs. 

6d, 8d. Similarly, the steady state of the pitch ( 2a ) is monotonic decreasing function of the damping coefficient 2 and 

natural frequency 2ω  and the gain 2G  and the nonlinear parameter 2α  as shown in Figs. 7a, b, c and Figs. 8e, f, g, h 

which are a good agreement of the effect of parameter shown in Fig.2. 
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Fig.6  Frequency response curves  of the first case ( 1 20,  0a a  ) 

 

 

Fig. 7 Frequency response curves  of the first case ( 1 20,  0a a  ) 
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Fig.8. Frequency response curves  of the first case ( 1 20,  0a a  ) 
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5- CONCLUSIONS  

       The vibration of second order coupled system simulating the vibration of the roll-ship motion subjected to excitation 

forces is studied at the simultaneous primary resonance case. A control low based on cubic velocity feedback is proposed. 

The method of multiple scales is used to obtain the approximate solution of the system. The stability and effect of 

parameters are studied numerically. From the above study the following may be concluded 

1- For the positive damping coefficients the amplitudes of roll and pitch are monotonic  decreasing functions on      

1 2 and    . 

2- The steady state amplitude of the roll and pitch are monotonic decreasing functions of the nonlinear 

parameters
1 2 and   . 

3- The steady state amplitude of the roll and pitch are monotonic increasing functions    of the excitation force amplitude 

1 2G  , F , Fand F ,  o o which leads to the system is unstable.  

4- The worst resonance case is simultaneous primary resonance 1 1 2 1, 2      , which the amplitudes of the roll  

and the pitch are increased to about 0.67 (34 times) and  0.064 (6times ) respectively, of the basic case . 

5-The steady state amplitude of the roll( 1a ) is monotonic decreasing functions of the  gain 1G , the steady state of the 

pitch ( 2a ) is monotonic decreasing function of the  gain  2G   
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