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Abstract

In this paper, the potential theory method (PTM) is used, in some different domains, to obtain the solution of Fredholm
integral equation (FIE) of the first kind with Carleman kernel. The solution is obtained in the form of spectral relationships
(SRs). Many new and important relationships are established and discussed from the work.
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1. Introduction:

Singular integral equation have received considerable interest the mathematical applications in different areas of
sciences, for example see Constanda [1], Venturino [2], Kangro [3], Diego [4], and Anastasia [5]. The solution of these
problems can be obtained analytically, using the theory developed by Muskhelishvili [6]. The books edited by Popov [7],
Tricomi [8], Hocthstab [9] and Green [10] contained many different methods to solve the integral equations analytically.
More recently, since analytical method on practical problem often fail, numerical solution of these equations is a much
studied subjected of numerous works. The interested reader should consult the fine exposition by Atkinson [11], Delves
and Mohamed [12], Golberg [13] and Linz [14] for numerical methods. The solution of integral equation, using potential
theory method, attracts the interest of many authors; see Alexandrov et al. [15], Abdou [16-17] and Abdou et al. [18].

Here, the existence and uniqueness of solution of FIE of the first kind with Carleman kernel is considered. Then, the PTM
is used to obtain the SRs of the integral equation.

Consider the following integral relation:

gﬁffﬁ=f“> (0<u<1) o
under the static condition
g ot)dt =P (P is constant), )
where £ is considered in the following three cases
(i) ¢={(x,y)el:y=0]x|<a}, (i) ¢={y=0x|=0},
(iii) ¢={y =0, 0<x <oo} 3)

In Eq. (1), f(X) is a known function where, ¢(X) is unknown function.

In order to guarantee the existence of a unique solution of (1) under (2), we assume the following conditions

(1) The singular kernel K (|X -y |) = |X -y |_'u , (0 < u <1), satisfies the Fredholm condition.

1
[I J.k 2(|X -y |)dxdy ]2 <E , (Eis a constant).
v

(2) The given continuous function (free term), f (X )EC [4], X €[] with its first derivatives.

(3) The unknown function ¢( X) satisfies the Lipschitz condition.

2. Potential Theory Method: For using the PTM, to obtain the solution of integral equation (1), under (2), we
introduce the general Carleman potential function

o)dt
LI(x—y)2+y2)H/2

The solution of Eqg. (1) under (2) with the aid of (4), is equivalent to the following BVP:

=U(x,y) 4)

2 2
AU+£§ZO ((X,y)gf, A:a—2+a—2)
y oy X oy
UGy = FxO y)es

2+y2) (5)

The complete solution of (1) will be considered from the following equivalence condition, see Abdou [16]

U(x,y)=Pr # = finitt  asr—o (r=4yx
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ouU
#(x) =4 lim sgn yMn— xet; A= [(ul2) ) ®)
—0 oy

y CJn T+ 1)1 2)

where F(t) is the gamma function.

We go now to discuss the solution of Eq. (5) in the three cases of the domain ¢ of Eq. (3)

2.1. Case (i): £={(x,y)el:y =0,x|<1}.

In this case, we eliminate the term 5_ of Eq. (5), by assuming

—ul?2
U 0y) =y [V, x0y) @
Then, we use the transformation mapping
w 1 _ i
z:x+iy:ﬁ:—(§+§ Y eccvin=pe?  i=V-1. @
2 2

The mapping function (8) maps the region in (X, ) plane into the region outside the unit circle 7 , such that @ (&) does
not vanish or becomes infinite outside the unit circle ¥ . Also the function (8) maps the upper and lower half- plane

((x,y) €[-11]) into the lower and the upper of the semi circle p = 1, respectively. Moreover the point Z = oo will
be mapped onto the point& = 0.

Hence, the BVP of (5), after using (8) and (7), becomes

1 1
AV(p,0)+ u(2 - u) + V(p.0)=0 (p<1),
2 B o
(p -1 4p~siné
3o~ L)sino T2 = (coso) (0 <D
2 2
i
v ,0,6" MNoof Gr<diaA- CAENON (B,
(20 50 op2 PO p? 62

1 1 1 ol
Where, v(p,9)=vo(x, y) =Vo| —(p+—)cosb, —(p——)sind |
2 yo, 2 o,

Using the separation of variables

V(p.6)=R(p)®(®) (10)
The first formula of (9) can be written in the following:
2 2
2d"R drR 0 2
p—tp—+ pl-p)— -4 |R=0 0<p<l)  ay
dp dp (P~ -1
d% 2 u(2-u)
_2+|:4 T i|c1)0 (—r<0<7xm) (@12
de 4sin” 6
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where A is the constant of separation of variables.

From the third formula of (9) and (10), we deduce that R(O) = 0. Moreover, the differential equation of the formula (12)

yields us to consider the periodic condition @(8) = ®(6 + 27). This periodic condition leads us to assume the
solution of Eq. (12) in the form:

®(0) = |sin 0| G(0) (0<7z<8) 13)
With the aid of periodic condition and the properties of Legendre polynomial see Bateman et.al [19], we have

A=n+ul?2 (n = 0,1,2,...) . Also, it is easily to prove that the even function (sin 0)U Prﬁ)—z) (COS@),

(v= —_,u' 0 < 8 < ) and the odd function (sin H)U QII‘I)—U (COS 9) (—7 < 8 < 0) satisfy the differential
2

equation (12). Hence the unique solution of (12), which satisfies the periodic solution, takes the form:
. v .
d(0) = w/‘sm 49‘ Ph—o (cos 6?) (—r<O0<7m; n=12,.. ) @14

. . y L . (04
Using the relation between the Legendre polynomial Pn—u (COS 9) and the Gegenbauer polynomlaICn (X) see
Bateman et.al [19], Eq. (14) yields

/2
D(0) = ‘sin 9‘0 C#/Z(cos 0) (—r<6<7; n=12,.. ) (@5

Also, after using the Riemann Scheme, see Gradstein et.al [20]

0 o0 1
M) =u? 2a-u?pdo ny. 0 u
- A A+ul?2 1—u

2 »
(u=p , RWuU)=M(), 0<u<l (e
in the Gauss hypergeametric function form F(a, b; c; z), the solution of Eq. (11) takes the form

N+ul2

R(p)= p A= p2YF(ul 2,0+ uin+1+ ul2:p° ). 0<p<1) @)

Using (16) and (17) in (10), the solution of the BVP (9) takes the form:
V(p.0)= P HE i 2+ win+ 14+ 112 0% )€ 2 (cos 0)
O<p<l , —7<O<7z , n=20 ) @8

The complete solution of integral equation (1) can be obtained after adapting the equivalence condition (4) in the form

-l
C(u!2)(sin )" N (p, 0
(cos g) = +1)( ) im - 2y 2D 6 h 0y e
Jz 2P e+ 12) o1 op
Then, using the formula (18) to obtain
() T(n+1+ wul?2 _
d(cos ) = ()T #12) (sin 0)“ 1Cf]llz(cos f) (0<f0<nrx ) (20)
Vr 29 T (u+ )T (e +1)12)

The given function f (X) of Eq. (1) can be written in the Gegenbauer polynomial, after using the second condition of Egs.
(5), (7) with the aid of (8) we have
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IT'A— )T (n+1+ ul2
(L— ) I( 7 )Cr‘,‘/z
NTL— u/2)

f(cos @) = (cos @) (0<O<7m) (1)

Inserting (20) and (21) in the integral equation (1), we obtain the following SRs of integral equation of the first kind with
Carleman kernel

1 c2ty dt
e et (e e
Alx -t @-t5)" 4
where the eigenvalues «, are given by
-1
an=7z1“(n+y)[n!l“(y)cos(7w/2)] O<u<l1l, n>20 ) (23

From the parametric equation of the transformation mapping (2.5), the inequality ‘X‘ > lleads us to take & = 0 when
X >1land @ = rwhen X < —1

Also, we have

p = ‘x‘ —\/x2 -1, (‘x‘ >1) (24)

Substituting @ = Ointo (18), then using the result to evaluate Eq. (20) at & = 0, also using @ = 77 in (6) , with the aid of
(24), we get

1 ul?2
: Ch “(mdt Un[H(x)+(—1)nH(—X)] (\X‘—J"T‘Jﬂlx

_1‘X_t‘ﬂ(1_t2)(1—y)/2

F(/¢/2,n+,u;n+l+,u/2;2x2 —Z‘X‘\/XZ -1-1), (‘x‘<1) (25)

where H (X) is the Heaviside function and

. J22H 1% (0 + 4) T (A + p) 1 2)

vp = 5 (26)
nt T ()I(n+1+ p/2)
2.2. Case (ii) ¢ ={ y = 0,|X | > O}: The integral equation (1) with its static condition become
1w #(t) dt
( [+ j =T (27)
—00 1 ‘x — t‘
and
-1 o0
[+ (t) dt =P < oo (28)
—00 1

The transformation mapping (8) maps the all points ‘X‘ > linto the half spacen] > 0, in the f plane. Hence, for

y > 0, we have {p >1, 0<f< 72'}, while fory <1, we have {p >1, 0<f< ﬂ}.Therefore we have the
following BVP:
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1 1
AV + u(2 - ) > + V=0 (p<wo, 0<O<n)

(o —1)2 4,02 sin @

1 1f.; —ul?2 1 1
Glo-Lsine) ™ V(.0)|g—g,9=r = T2 (0 + D) cos 6] (A< p <)
P P 0=0,0=x
. —ul?2 —
(% p—%sme) # V(,o,é?)(p_)o,p_>Oo ~Pr (r > o) (29)

To discuss and obtain the solution of (29), we use the formula (10) to separate the variables. In this aim, we have the

2 2
same two differential equations of (11) and (12) after removing the constant A by— A~ . Then solving these two
formulas, with the aid of Bateman et.al [19], we obtain

L1
Yo

U(x,y) =Ug(p.0) = (% sin9)”.[ ARY (cos 0) + BQL (cos 6) ] X

{CR; I3 (p+ )1+ DR, VI3 (p -},

(p<oo,0<6?<7r,a=—%+il, u:l_TU, A>0) (@30

where A, Bare complex constants, while C and D are real constants.

To discuss the even and odd functions of the variables @ (at@ = %) of Eq. (30), we assume

G(0) = AP(; (cos O) + BQZ (cos ) (31)
With the help of the two formulas (14) and (15); pp.145 Of Bateman et.al [19], where G (€) =G (7 —6), (0< 8 < % .

. T
And then, for the even function at @ = %=, we have

2
Afcoslz(5 ~ 4] -1} + %sin[n(g )] =d

2A

T

sin[yr(% _i2)]-B{1+ COS[ﬂ(% ~iAl}=0
Solving the two previous formulas, we get
- 2A tan| 7 (H _j
B = pe tan[z(2 |/’L)} (32)
With the help of formula (32) we can obtain the real even function of Eq. (31) in the form
GO) =(sin0)’G, (), (0<0<n),

G} (6) = P (cos6) + & ttan [x(4 ~12)1QY (cos 6) + tan[r(£ + 1£)] Q2 (cos ) iz
Also, for the odd real function, we have

G(0) = (sin0)’ G (0) (0<6<7)

G7(6) = PZ (cos 6) — £ {eotlr (4 ~12)1Q (cos 6) + cotr (4 + 14)1QY (cos 6) fsa)
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Using (33) and (34) in (20), after putting C =1, D = 0, we have the solution of the BVP in the form:
U(p.0) = (3lp-3DUGOPYI5(p+H1 (p<o, 0<0<7) @)
Also, for C =0, D =1we have
Ug(p.0)=(31p-1/ p)" Gy (@) P 3 (p+ B (p<o0. 0<O<m) @6

The reader, after some calculus, can establish from the formula (35) at & = 0, the relation

Un(p,0) = 2V 1+ cos(mu / 2) cosh(Ar)
0% = T(@W ) 72) | cos(mu ] 2)[cosh(Ar) + cos(mu ] 2)]

br2lo-1/ ) P 0+ 5= 1 G o +)) @)

To obtain the equivalence relation of the potential function, we can adapt the right hand side of (6) in polar coordinates,
then using (35) to obtain

00 =EL [3p-1 pl° PEI (0 + 1 )] . (x=3(p+1/p), p>1).

EH _ I'(ul?2) 1+ cos(u l 2) cosh(Ar)
A wr - 2
{r(u12+i4)|[cosh(2z) + cos(zu 1 2)]}

(38)

Substituting from (37) and (38) into (27) we have the following SRs:

o0

1 > B d
1 (x—t)”i(xﬁLt)ﬂ)(t DL A =0, ()WL (tA), (x>1, 2>0) (39)

Also, using the two formulas (34) and (36), we have the following SRs:

Tl 11 2 )Pyt A)dt= o, (A)P_(tA). A>0
{((x—t)ﬂ+(x+t)ﬂ)( ) t,Adt=0, (1)¥Y_(t,4),(x>1, 21>0) (40)

Here, in (39) and (40) we assume

WL (x4) = (x2 ~1)P/2P2Y (%),

o (1) =[cosh(zA) + cos (mu/ 2)|T () 2+i4) |2[F(,u) cos (71 2) ]‘1 (41)
The two formulas of Egs. (39), (40) can be written in following SRs:
O (t,4)

t2-)Vdt=p, ¥, (x,A) (x>1 A>0) “2)
1‘(xit)‘” -

L WP_(t,1) (t2 1

Pdt=p, ¥P_(x,1) (x>1, A>0) (43)
L|(x J_rt)‘” -

where
. 2 —1
P () =[C(ul2+i2) |7 [C(w) ]

p—(X) = cosh (4 )|T(ul 2 +i4) |2[r(u) cos (71 2) ]‘1

As important SRs in contact problems, we take in (42) and (43) the positive sign. Then let 1/ = 1, to get
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(t)dt
__% ny .

= P X), x>1). 44
{ XH cosh (74 ) —%+i/1() (x>1) (“44)

Another SRs corresponding to the four SRs of Eq. (39) and (40), in the interval O < X <1, which transformed to
{p <1,0<6< %}in f —plane, by using the formulas (33),(35) and (34), (36), with the equivalence condition (38), are

[y (th) 2167070, (At = 4, (1) a-x7) /26 (arceos ) @9

1(X_t)ﬂ (th)ﬂ](tz—1)‘”\P_(t,ﬂ)dt=o O<x<1) (¢

'—-8

where

2
£.(0) =T (ul2+12)|° [cosh(27) £ cos (zu/2) |

(47)
T (1)[1+ cos (zul 2) cosh(Ax)]
2.3. Case (i) /={y =0, 0<x <oo}
In this case, we consider the transformation mapping
z=3¢&° (48)
The parametric equations of (48) will take the form
X=1(&"-n") . y=&n (49)
In this case, the corresponding BVP to the formulas (5), (7) and (9) will take the form
82V 82V ..
—2+—2+—(——)<—+ 2)vm):o (n>0)
06° on- 2 &
—ul2 2
(&~ 2v(g.n)| oo = 1% /2) (0<&<)
(&l "2V (& m) -0 (&*+n* =) (50
where
V(&) =V (G(&* —n* &) (51)
Also the equivalence relation (6), in this case, takes the form
_ Uy (&.m)
Zﬁr((“ﬂ)/z);é(x):f“ 1 lim 77/“0— (x=§2/2 , >0 ) (52)
I'(ul?2) n—>0" 0Jn
1,.2 2 —ul2
Ug(&m =U (G5 (€ =n".em) = (gm Vg 53)
To discuss and obtain the solution of (50), we use the separation of variables
V(&) = X(£)Y () (54)
To obtain

(-0 < & <) (55)

d°X(&) | #l-1) 2|y _g
dg? 4¢°
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2 —
dYgﬁ+ ﬂﬂzﬂ)+f Y =0 (0< 7 <o) (56)
dn 4n

where A?is the constant of separation.

The independent solution of Eq. (55) can be represented in the form of two

functions\/g\]i(ﬂ,f), \/EYJ_r 18, (1,,¢>0, v= ”T_l) , where J_ (X)is the Bessel functioning of the first kind,

. o P .
while Y, (X) of the second kind. Since the function ‘f‘ X (&) (see the second formula of (50), in the

axis — 00 < f < 00, must be even, bounded and exist at infinity, so, the solution of Eq. (55) will takes the form

-1
X(£) = V¢ 3,(28) (LE>0, v=217) 7
Also, the solution of Eq. (56) takes the form
Y (&) =n Ky, () (7>0) 58)

where K, (X)is the Macdonald function

Hence, the solution of the BVP (50) becomes

V(&) =énd, (29K, (An) 59)
To obtain the equivalence relation, we use the formula (53) to obtain
U, Em=n)"3,00K,@n  (L&n>0) (50
then, finally, we have
_AT(WI2) o
¢(x)__zgg7:;;:E;-x J, (A2x) (61)

To satisfy the second formula of (50), with the aid of (60), we use the following properties and relations of Macdonald and
Bessel functions, respectively, (see Bateman et.al [19])

2n+ov
T

K, = ——I_,. S 1,7/];: 417, (X) Qi1 (62)
K Zsin(m))[ i U] K n=0n!'T'(n+0v +1)

I, (X) is called the modified Bessel functions of the first kind.
Hence, we have
7

oW 2 ot 12T (L4 1) 12)

. -0 _
Jimo UK, () = 63

With the aid of the previous formulas (63) and (60), we get
ﬂﬂug—u

u,(&n) =
0 oW 2 o 12T (Lt 1) 12)
n=0

Using the two formulas (60) and (58) in the integral equation of Carleman kernel (1), we have the following SRs:

1,008) = 1(£212) (4
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/2
19tY79) (At _
jMdt:a(ﬂ)x 0125 ax) (x > 0)
70 |x —t|ﬂ
—2v ,2v
2 774 -1
o(1) = (1>0, v=2"7 (65)
I'() cos(mul 2) 2
Also, following the same previous way, we obtain the following SRs:
/2 2v —v/2
0PIy (At A7 (=x
[ ol \/_)dt: (_2) K,(AN—Xx) (x >0) (64)
0 |x -t 247 ()
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