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Abstract 

In this paper, the potential theory method (PTM) is used, in some different domains, to obtain the solution of Fredholm 
integral equation (FIE) of the first kind with Carleman kernel. The solution is obtained in the form of spectral relationships 
(SRs). Many new and important relationships are established and discussed from the work. 
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1.  Introduction:  

Singular integral equation have received considerable interest the mathematical applications in different areas of 
sciences, for example see Constanda [1], Venturino [2], Kangro [3], Diego [4], and Anastasia [5]. The solution of these 
problems can be obtained analytically, using the theory developed by Muskhelishvili [6]. The books edited by Popov [7], 
Tricomi [8], Hocthstab [9] and Green [10] contained many different methods to solve the integral equations analytically. 
More recently, since analytical method on practical problem often fail, numerical solution of these equations is a much 
studied subjected of numerous works. The interested reader should consult the fine exposition by Atkinson [11], Delves 
and Mohamed [12], Golberg [13] and Linz [14] for numerical methods.  The solution of integral equation, using potential 
theory method, attracts the interest of many authors; see Alexandrov et al. [15], Abdou [16-17] and Abdou et al. [18]. 

Here, the existence and uniqueness of solution of FIE of the first kind with Carleman kernel is considered.  Then, the PTM 
is used to obtain the SRs of the integral equation.  

Consider the following integral relation: 
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t dt

f x
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                        )10(                                   (1) 

under the static condition 

  ( )t dt P 


                            (P is constant),                           (2) 

where   is considered in the following three cases  

  ( ) ( , ) : 0, ,i x y y x a                               ( ) 0, 0ii y x   , 

                        ( ) 0, 0iii y x                                                                                                             (3) 

 In Eq. (1), )(xf  is a known function where,  x  is unknown function. 

In order to guarantee the existence of a unique solution of (1) under (2), we assume the following conditions 

(1) The singular kernel ( ) , (0 1),k x y x y





      satisfies the Fredholm condition.  

1

2 2[ ( ) ]k x y dxdy E  
 

, (E is a constant). 

(2) The given continuous function (free term),   [ ], [ ]f x C x    with its first derivatives. 

(3) The unknown function  x  satisfies the Lipschitz condition. 

2. Potential Theory Method:  For using the PTM, to obtain the solution of integral equation (1), under (2), we 

introduce the general Carleman potential function 
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 The solution of Eq. (1) under (2) with the aid of (4), is equivalent to the following BVP: 
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The complete solution of (1) will be considered from the following equivalence condition, see Abdou [16] 



ISSN 2347-1921                                                           

1706 | P a g e                                                            M a y  3 0 ,  2 0 1 4  

  

y

U
yy

y
x









 sgn

0
lim)(       

( / 2)
( ; )

2 ((1 ) / 2)
x




 


 

 
        (6)            

where )(t is the gamma function. 

We go now to discuss the solution of Eq. (5) in the three cases of the domain   of Eq. (3) 

2.1. Case (i):  ( , ) : 0, 1x y y x     . 

 In this case, we eliminate the term 
y

U




of Eq.  (5), by assuming  

   
/2

( , ) ( , )oU x y y V x y


                                                              (7) 

Then, we use the transformation mapping 
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The mapping function (8) maps the region in ),( yx plane into the region outside the unit circle , such that )( does 

not vanish or becomes infinite outside the unit circle  . Also the function (8) maps the upper and lower half- plane 

)]1,1[),(( yx  into the lower and the upper of the semi circle 1 , respectively. Moreover the point z  will 

be mapped onto the point 0 . 

Hence, the BVP of (5), after using (8) and (7), becomes    
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Using the separation of variables 
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The first formula of (9) can be written in the following: 
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where  is the constant of separation of variables. 

From the third formula of (9) and (10), we deduce that 0)0( R . Moreover, the differential equation of the formula (12) 

yields us to consider the periodic condition )2()(   . This periodic condition leads us to assume the 

solution of Eq. (12) in the form:   

)(sin)(  G                                       )0(                    (13) 

With the aid of periodic condition and the properties of Legendre polynomial see Bateman et.al [19], we have 

 ,...2,1,02/  nn   . Also, it is easily to prove that the even function    sin cos ,Pn
      

)0,
2

1
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 and the odd function    




 cossin nQ  )0(    satisfy the differential 

equation (12). Hence the unique solution of (12), which satisfies the periodic solution, takes the form: 

 
 cossin)(  nP               ),...2,1;(  n      (14) 

Using the relation between the Legendre polynomial )(cos

nP  and the Gegenbauer polynomial )(xnC


, see 

Bateman et.al [19], Eq. (14) yields   
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Also, after using the Riemann Scheme, see Gradstein et.al [20]  
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in the Gauss hypergeametric function form F(a, b; c; z), the solution of Eq. (11) takes the form 
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Using (16) and (17) in (10), the solution of the BVP (9) takes the form: 
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The complete solution of integral equation (1) can be obtained after adapting the equivalence condition (4) in the form  
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Then, using the formula (18) to obtain  
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The given function )(xf of Eq. (1) can be written in the Gegenbauer polynomial, after using the second condition of Eqs. 

(5),  (7) with the aid of (8) we have    
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Inserting (20) and (21) in the integral equation (1), we obtain the following SRs of integral equation of the first kind with 

Carleman kernel 

 )(
2/

1

1 2/)1(
)

2
1(

)(
2/

xnCn
ttx

dttnC 







 



                     )1( t           (22)  

where the eigenvalues n are given by  
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From the parametric equation of the transformation mapping (2.5), the inequality 1x leads us to take 0 when 

1x and   when 1x            

Also, we have  
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Substituting 0 into (18), then using the result to evaluate Eq. (20) at 0 , also using    in (6) , with the aid of 
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where )(xH is the Heaviside function and   
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2.2. Case (ii)  0, 0y x   : The integral equation (1) with its static condition become       
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 The transformation mapping (8) maps the all points 1x into the half space 0 , in the  - plane.  Hence, for 

,0y we have    0,1 , while for 1y  , we have    0,1 .Therefore we have the 

following BVP: 
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To discuss and obtain the solution of (29), we use the formula (10) to separate the variables. In this aim, we have the 

same two differential equations of (11) and (12) after removing the constant 
2
 by

2
  . Then solving these two 

formulas, with the aid of Bateman et.al [19], we obtain 
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where BA, are complex constants, while C and D are real constants.  

To discuss the even and odd functions of the variables )
2

(


 at of Eq. (30), we assume 
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With the help of the two formulas (14) and (15); pp.145 0f Bateman et.al [19], where ( ) ( ), (0 ).
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Solving the two previous formulas, we get 
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With the help of formula (32) we can obtain the real even function of Eq. (31) in the form  
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Also, for the odd real function, we have  
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Using (33) and (34) in (20), after putting ,0,1  DC we have the solution of the BVP in the form: 
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  PGU            , )0,(    (35)  

Also, for 1,0  DC we have  
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The reader, after some calculus, can establish from the formula (35) at 0 , the relation 
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To obtain the equivalence relation of the potential function, we can adapt the right hand side of (6) in polar coordinates, 
then using (35) to obtain  
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Substituting from (37) and (38) into (27) we have the following SRs:  
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Also, using the two formulas (34) and (36), we have the following SRs: 
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Here, in (39) and (40) we assume 
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The two formulas of Eqs. (39), (40) can be written in following SRs:  
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As important SRs in contact problems, we take in (42) and (43) the positive sign. Then let 1 , to get 
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Another SRs corresponding to the four SRs of Eq. (39) and (40), in the interval 10  x , which transformed to 
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2.3. Case (iii)  0, 0y x     

 In this case, we consider the transformation mapping 
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The parametric equations of (48) will take the form 
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In this case, the corresponding BVP to the formulas (5), (7) and (9) will take the form 
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Also the equivalence relation (6), in this case, takes the form 
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To discuss and obtain the solution of (50), we use the separation of variables 
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where 
2 is the constant of separation. 

The independent solution of Eq. (55) can be represented in the form of two 

functions ),0,,(),(),(
2

1

 
 YJ , where )(xJ is the Bessel functioning of the first kind, 

while )(xY  of the second kind. Since the function )(
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(see the second formula of (50), in the 

axis   , must be even, bounded and exist at infinity, so, the solution of Eq. (55) will takes the form 
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Also, the solution of Eq. (56) takes the form   
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where )(xK is the Macdonald function 

Hence, the solution of the BVP (50) becomes 
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To obtain the equivalence relation, we use the formula (53) to obtain 
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then, finally, we have 
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To satisfy the second formula of (50), with the aid of (60), we use the following properties and relations of Macdonald and 
Bessel functions, respectively, (see Bateman et.al [19]) 
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)(xI  is called the modified Bessel functions of the first kind.  

Hence, we have 
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With the aid of the previous formulas (63) and (60), we get           
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Using the two formulas (60) and (58) in the integral equation of Carleman kernel (1), we have the following SRs:    
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Also, following the same previous way, we obtain the following SRs: 
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