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ABSTRACT 

In this paper, based on the integral expressions for the conditional risk 𝑅𝑚  𝑥  and the risk  𝑅𝑚 , we evaluate the upper 

bounds of the risk for some important distributions with unbounded support 𝑆 =  0,∞ .  
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1 INTRODUCTION 

The nearest neighbor rules method is widely used in pattern recognition. This method is useful both for classification and 
for estimation of density functions and is one of the nonparametric techniques. Many researches are studied for bounded 
supports; see Dasarathy [3], Fukunaga and Hummels [8], Psaltis et al. [11], and Snapp and Venkatesh [12]. Cover and 
Hart [1] proved that 𝑅∗ ≤ 𝑅∞ ≤ 2𝑅∗ 1 − 𝑅∗  under certain conditions on the distribution, where 𝑅∗ denotes the Bayes error 

( the minimum probability of error over all decision rules) and 𝑅∞ is the nearest neighbor risk in the infinite-sample limit. If 

𝑅∗ ≪ 1 then the nearest neighbor classifier is nearly in the infinite sample limit. In practice, however, the sample must be 

finite. Furthermore, data storage and access costs favor small samples. So we are interest to the upper bounds of the 
finite sample risk 𝑅𝑚  and how rapidly does the statistical risk 𝑅𝑚  of a nearest neighbor rule approach its infinite-sample 

limit 𝑅∞  in the case of unbounded support for which we find asymptotic expansion for the finite sample risk 𝑅𝑚  for special 

distributions having unbounded support 𝑆 =  0,∞ .  

The nearest neighbor rule was first studied by Fix and Hodges [5], [6]. Cover [2] has shown that 𝑅𝑚 = 𝑅∞ + 𝑂 𝑚−2  for the 
nearest neighbor classifier in the case one-dimensional bounded support, mixture density 𝑓 ≥ 𝑐 > 0, and under some 

additional conditions. Wagner [14] and Fritz [7] treated convergence of the conditional error rate for nearest neighbor. 
Fukunaga and Hummels [8] studied the rate of convergence of the above bias in 𝑑-dimensional feature space. Psaltis et 

al. [11] generalized the results of Cover [2] to general dimension, and Snapp and Venkatesh [12] further extended the 
results to the case of multiple classes. Irle and Rizk [10] found an asymptotic evaluation of the conditional risk 𝑅𝑚 (𝑥) (the 

probability of error conditioned on the event that 𝑋 = 𝑥) by using partial integration and Laplace’s method. There is a 

wealth of consistency results in different directions available for nearest neighbor rules; see the collection of Dasarathy [3], 
the monographs by Devroye et al. [4], Gyӧrfi et al. [9], and Theodoridis, Koutroumbas [14],[15]. 

1.1 Nearest neighbor procedure 

The neatest neighbor decision rule is one of the simplest types of nonparametric methods of interest in statistical pattern 
recognition that can be used with arbitrary distributions and without the assumption that the forms of the underling 
densities are known.  

Let  𝑋(1), 𝜃(1) ,  𝑋(2), 𝜃(2) , … ,  𝑋(𝑚), 𝜃(𝑚)  be independent distributed random variables taking values in  𝑅𝑑 ×  1,2, . . . , 𝐶 , 

and let (𝑋, 𝜃) be another independent sample of the same distribution, such that 𝑋 is an observed pattern and it is desired 

to estimate 𝜃. The neatest neighbor rule assigns 𝑋 to a class 𝜃(𝑖) if  

 𝑋 − 𝑋(𝑖) ≤  𝑋 − 𝑋(𝑗 ) ,   for all 𝑖 ≠ 𝑗, 

That is, we will call 𝑋′ ∈  𝑋(1), 𝑋(2), … , 𝑋(𝑚)  a nearest neighbor to input pattern 𝑋 if  

 min
1≤i≤m

 𝑋 − 𝑋(𝑖) =  𝑋 − 𝑋′   

In case of a tie, the candidate with the smaller index is said to closer to 𝑋, that is if  𝑋 − 𝑋(𝑖) =  𝑋 − 𝑋(𝑗 ) , and  𝑖 < 𝑗, we 

choose 𝑋(𝑖) as a nearest neighbor of 𝑋 and assign it to a class 𝜃(𝑖).   

In this paper, we suppose that the class-conditional distributions 𝐹𝑙  are absolutely continuous with corresponding densities 

𝑓𝑙 , for each 𝑙 ∈  1,2 . Let 𝑓 = 𝑝1  𝑓1 + 𝑝2 𝑓2 denote the mixture density, where 𝑝1 + 𝑝2 = 1,  0 < 𝑝𝑙 < 1 for all 𝑙, 𝜌 =  𝑥′ − 𝑥  is 

the distance between two points 𝑥′ and  𝑥, and let 𝑆 be its support in 𝑅.  

1.2 The finite sample risk 

The neatest neighbor rule decides 𝑋 belong to the class 𝜃′ of its nearest neighbor 𝑋′. A mistake is made if 𝜃′ ≠ 𝜃. Notice 
that the neatest neighbor rule utilizes only the classification of the nearest neighbor. The 𝑚 − 1 remaining classifications 

𝜃(𝑖) are ignored. The risk of the nearest neighbor procedure from a training sequence of size 𝑚 is defined by 𝑅𝑚 =
𝑃 𝜃′ ≠ 𝜃 . 

The finite-sample risk 𝑅𝑚  can be written in integral form (see [10],[11]), The conditional probability of error for the nearest 

neighbor rule is defined as the probability of error in classification 𝜃 by 𝜃′ given 𝑋 and its nearest neighbor 𝑋′, and denoted 
by 𝑃 𝜃 ≠ 𝜃′ 𝑋, 𝑋′ . By averaging 𝑃 𝜃 ≠ 𝜃′ 𝑋, 𝑋′  over 𝑋′, we obtain the probability of error conditioned on the event that 

𝑋 = 𝑥 and denoted by 𝑅𝑚  𝑋 , such that  

𝑅𝑚  𝑋 = 𝑃 𝜃 ≠ 𝜃′ 𝑋 = 𝑥 , 

              =
𝑝1𝑝2𝑓1 𝑥 

𝑓 𝑥 
 𝑚 𝑓2 𝑥′ 

 

𝑆
 𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1 𝑑𝑥′ +

𝑝1𝑝2𝑓2 𝑥 

𝑓 𝑥 
 𝑚 𝑓1 𝑥′ 

 

𝑆
 𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1 𝑑𝑥′  

            =
𝑝1𝑝2𝑓1 𝑥 

𝑓 𝑥 
𝐼 +

𝑝1𝑝2𝑓2 𝑥 

𝑓 𝑥 
𝐽,                                                                                                                                                        (1.1) 

where  

𝐼 = 𝐼 𝑥 =  𝑚𝑓2 𝑥′   𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1𝑑𝑥′,
 

𝑆

                                                                                                           (1.2) 
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𝐽 = 𝐽 𝑥 =  𝑚𝑓1 𝑥′   𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1𝑑𝑥′
 

𝑆

,                                                                                                           (1.3) 

and by averaging 𝑃 𝜃 ≠ 𝜃′ 𝑋 = 𝑥  with respect to 𝑋, we obtain the finite-sample risk 𝑅𝑚  (the unconditional probability of 

error) in the form: 

𝑅𝑚 = 𝑃 𝜃′ ≠ 𝜃 =  𝑃 𝜃′ ≠ 𝜃 𝑋 = 𝑥  𝑓 𝑥 𝑑𝑥
 

𝑆
                                                                                                                         (1.4)  

                                = 𝑝1𝑝2   𝑚
 

𝑆

 

𝑆

 𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   
𝑚−1

∙  𝑓1 𝑥 𝑓2 𝑥′ + 𝑓1(𝑥′) 𝑓2(𝑥) 𝑑𝑥′𝑑𝑥.                            (1.5) 

2. The main result 

In this section, we evaluate the probability of error conditioned on the event that 𝑋 = 𝑥 for a two-class pattern recognition 

problem for support 𝑆 =  0,∞ , and we derive the finite-sample risk 𝑅𝑚 . 

2.1 Theorem  

Let 𝑥 ∈ 𝑆. Assume that the densities 𝑓𝑙  are differentiable for  𝑙 = 1,2,  𝑓(𝑥) > 0, and 𝑓 𝑥 − 𝜌 + 𝑓 𝑥 + 𝜌 > 0 for 𝜌 > 0. 
Define 

         𝑞0 𝑥, 𝜌 =
𝑓2 𝑥−ρ +𝑓2 𝑥+ρ 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
, 𝑞1 𝑥, 𝜌 =

𝑞0
′  𝑥 ,𝜌 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
,  𝑞 0 𝑥, 𝜌 =

𝑓1 𝑥−ρ +𝑓1 𝑥+ρ 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
  and  𝑞 1 𝑥, 𝜌 =

𝑞 0
′  𝑥,𝜌 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
.  

Then 

          𝑅𝑚 ≤ 𝑅∞ +
1

2𝑚
 1 − 𝑒−2𝑚) − 𝑝1𝑝2     𝑓1 𝑥 𝑞0 𝑥, 𝑥 + 𝑓2 𝑥 𝑞 0 𝑥, 𝑥   1 −  𝐹 2𝑥   

𝑚
  𝑑𝑥

∞

0
  

                                            +
𝑝1𝑝2

 𝑚+1 
    𝑓1 𝑥 𝑞1 𝑥, 𝑥 +𝑓2 𝑥 𝑞 1 𝑥, 𝑥   1 −  1 −  𝐹 2𝑥   

𝑚+1
  𝑑𝑥

∞

0
  

where 𝑅∞ =   
2𝑝1𝑝2𝑓1 𝑥 𝑓2 𝑥 

𝑓 𝑥 
 𝑑𝑥

∞

0
, that was first derived by Cover and Hart [1].  

Proof. 

Firstly, we evaluate the asymptotic expansions for 𝐼 and 𝐽 in (1.1).  

From equation (1.2), we have  

𝐼 = 𝐼 𝑥 = 𝑚 𝑓2 𝑥′    𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1∞

0
𝑑𝑥′  

               = 𝑚  𝑓2 𝑥′   𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1𝑥

0
𝑑𝑥′  

                                 + 𝑚  𝑓2 𝑥′   𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1∞

𝑥
𝑑𝑥′  

                  = 𝑚 𝑓2 𝑧   𝑃 𝑋 < 𝑧 + 𝑃 𝑋 > 𝑥 +  𝑥 − 𝑧   
𝑚−1𝑥

0
𝑑𝑧    

                                +𝑚  𝑓2 𝑧   𝑃 𝑋 > 𝑧 + 𝑃 𝑋 < 𝑥 −  𝑧 − 𝑥   
𝑚−1∞

𝑥
𝑑𝑧  

                  = 𝑚 𝑓2 𝑥 − 𝜌   𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚−1𝑥

0
𝑑𝜌  

                               + 𝑚   𝑓2 𝑥 + 𝜌   𝑃 𝑋 > 𝑥 + 𝜌 + 𝑃 𝑋 < 𝑥 − 𝜌  𝑚−1∞

0
𝑑𝜌  

               = 𝑚  𝑓2 𝑥 − 𝜌 + 𝑓2 𝑥 + 𝜌  .  𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚−1𝑑𝜌
𝑥

0
  

                          + 𝑚  𝑓2 𝑥 + 𝜌  𝑃 𝑋 > 𝑥 + 𝜌  
𝑚−1∞

𝑥
𝑑𝜌 = 𝐼′ + 𝐼′′,                                                                                   2.1  

where 

 𝐼′ = 𝑚  𝑓2 𝑥 − 𝜌 + 𝑓2 𝑥 + 𝜌  .  𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚−1𝑑𝜌
𝑥

0
                                                                  2.2      

 𝐼′′ = 𝑚 𝑓2 𝑥 + 𝜌  𝑃 𝑋 > 𝑥 + 𝜌  
𝑚−1∞

𝑥
                                                                                                                                  2.3  

Similarly, 

𝐽 = 𝐽 𝑥 =  𝑚𝑓1 𝑥′   𝑃  𝑋 − 𝑥 >  𝑥′ − 𝑥   𝑚−1𝑑𝑥′
 

𝑆
  

                 = 𝑚   𝑓1 𝑥 − 𝜌 + 𝑓1 𝑥 + 𝜌  .  𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚−1𝑑𝜌
𝑥

0
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+ 𝑚 𝑓1 𝑥 + 𝜌  𝑃 𝑋 > 𝑥 + 𝜌  
𝑚−1∞

𝑥
𝑑𝜌 = 𝐽′ + 𝐽′′,                                                                                                                      2.4  

where 

 𝐽′ = 𝑚  𝑓1 𝑥 − 𝜌 + 𝑓1 𝑥 + 𝜌  .  𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚−1𝑑𝜌
𝑥

0
,                                                                      2.5      

 𝐽′′ =  𝑚 𝑓1 𝑥 + 𝜌  𝑃 𝑋 > 𝑥 + 𝜌  
𝑚−1∞

𝑥
𝑑𝜌.                                                                                                                               2.6  

Now, we evaluate 𝐼′ and 𝐼′′, 

𝐼′ = 𝑚  𝑓2 𝑥 − 𝜌 + 𝑓2 𝑥 + 𝜌  .  𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚−1𝑑𝜌
𝑥

0
  

     = − 
𝑓2 𝑥−ρ +𝑓2 𝑥+ρ 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
 
𝑑

𝑑𝜌
 𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚𝑑𝜌

𝑥

0
 

     = − 𝑞0 𝑥, 𝜌  
𝑑

𝑑𝜌
 𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚𝑑𝜌

𝑥

0
, 

where 𝑞0 𝑥, 𝜌 =
𝑓2 𝑥−ρ +𝑓2 𝑥+ρ 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
                                                                                                                                                       2.7  

Then, by partial integration 

 𝐼′ =  𝑞0
′  𝑥, 𝜌   𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚𝑑𝜌

𝑥

0
−  𝑞0 𝑥, 𝜌  𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  

𝑚
 

0

𝑥
 

     = 𝑞0 𝑥, 0 +  𝑞0
′  𝑥, 𝜌   𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚𝑑𝜌

𝑥

0
   

     = 𝑞0 𝑥, 0 − 𝑞0 𝑥, 𝑥 ∙  𝑃 𝑋 > 2𝑥  
𝑚

+ 𝐼1
′ ,                                                                                                                           2.8  

where  𝐼1
′ = 𝐼1

′  𝑥 =  𝑞0
′  𝑥, 𝜌   𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚𝑑𝜌

𝑥

0
. 

Now we evaluate 𝐼1
′ , and write 𝐼1

′  in the form 

 𝐼1
′ =

−1

𝑚+1
 

𝑞0
′  𝑥,𝜌 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
 
𝑑

𝑑𝜌
 𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚+1𝑑𝜌

𝑥

0
 

     =
−1

𝑚+1
 𝑞1 𝑥, 𝜌  

𝑑

𝑑𝜌
 𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚+1𝑑𝜌

𝑥

0
, 

where 𝑞1 𝑥, 𝜌 =
𝑞0
′  𝑥 ,𝜌 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
.                                                                                                                                                    2.9  

We integrate by parts with 

𝑢 = 𝑞1 𝑥, 𝜌 ,      𝑑𝑣 =
𝑑

𝑑𝜌
 𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚+1𝑑𝜌, then 

 𝐼1
′ =

1

𝑚+1
 𝑞1

′  𝑥, 𝜌   𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚+1𝑑𝜌
𝑥

0
−

1

𝑚+1
  𝑞1 𝑥, 𝜌  𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  

𝑚+1
 

0

𝑥

 

      =
𝐼2
′

𝑚+1
+

𝑞1 𝑥 ,0 

𝑚+1
−

𝑞1 𝑥,𝑥 

𝑚+1
 𝑃 𝑋 > 2𝑥  

𝑚+1
,                                                                                                                         2.10  

where  𝐼2
′ =  𝑞1

′  𝑥, 𝜌   𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚+1𝑑𝜌
𝑥

0
. 

From (2.8) and  (2.10) we obtain 𝐼′ in the following form 

𝐼′ = 𝑞0 𝑥, 0 − 𝑞0 𝑥, 𝑥 ∙  𝑃 𝑋 > 2𝑥  
𝑚

+
𝑞1 𝑥, 0 

𝑚 + 1
−
𝑞1 𝑥, 𝑥 

𝑚 + 1
 𝑃 𝑋 > 2𝑥  

𝑚+1
+

𝐼2
′

𝑚 + 1
                                     (2.11) 

Evaluating 𝐼2
′ : 

𝐼2
′ =  𝑞1

′  𝑥, 𝜌   𝑃 𝑋 < 𝑥 − 𝜌 + 𝑃 𝑋 > 𝑥 + 𝜌  𝑚+1𝑑𝜌
𝑥

0

 

    ≤  𝑞1
′  𝑥, 𝜌 𝑑𝜌

𝑥

0
=   𝑞1 𝑥, 𝜌  0

𝑥 = 𝑞1 𝑥, 𝑥 − 𝑞1 𝑥, 0 , then 

 𝐼′ ≤ 𝑞0 𝑥, 0 − 𝑞0 𝑥, 𝑥 ∙  𝑃 𝑋 > 2𝑥  
𝑚

+
𝑞1 𝑥,𝑥 

𝑚+1
 1 −  𝑃 𝑋 > 2𝑥  

𝑚+1
                                                                  (2.12) 

Now, we evaluate  𝐼′′, 
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𝐼′′ = 𝑚 𝑓2 𝑥 + 𝜌  𝑃 𝑋 > 𝑥 + 𝜌  
𝑚−1

∞

𝑥

𝑑𝜌 

    ≤ 𝑚 
1

𝑝2

𝑓 𝑥 + 𝜌  1 −  𝐹 𝑥 + 𝜌   
𝑚−1

∞

𝑥

𝑑𝜌 

   ≤
−1

𝑝2

  1 −  𝐹 𝑥 + 𝜌   
𝑚
 
𝑥

∞
=

1

𝑝2
 1 −  𝐹 2𝑥   

𝑚
, then 

 𝐼′′  ≤
1

𝑝2
 1 −  𝐹 2𝑥   

𝑚
.                                                                                                                                                                (2.13) 

Substituting (2.12) and  (2.13) in to  (2.1) we obtain 

𝐼 = 𝐼′ + 𝐼′′ ≤ 𝑞0 𝑥, 0 − 𝑞0 𝑥, 𝑥 ∙  𝑃 𝑋 > 2𝑥  
𝑚

+
𝑞1 𝑥,𝑥 

𝑚+1
 1 −  𝑃 𝑋 > 2𝑥  

𝑚+1
 +

1

𝑝2
 1 −  𝐹 2𝑥   

𝑚
.  

 = 𝑞0 𝑥, 0 +  
1

𝑝2

− 𝑞0 𝑥, 𝑥   1 −  𝐹 2𝑥   
𝑚

+
𝑞1 𝑥, 𝑥 

𝑚 + 1
 1 −  1 −  𝐹 2𝑥   

𝑚+1
 ,                                                 (2.14) 

where  𝑞0 𝑥, 0 =
𝑓2 𝑥 

𝑓 𝑥 
, 𝑞0 𝑥, 𝑥 =  

𝑓2 0 +𝑓2 2𝑥 

𝑓 0 +𝑓 2𝑥 
, and  𝑞1 𝑥, 𝑥 =

𝑞0
′  𝑥,𝑥 

𝑓 0 +𝑓 2𝑥 
.    

Similarly, we can show that 

 𝐽 = 𝐽′ + 𝐽′′ ≤ 𝑞 0 𝑥, 0 +  
1

𝑝1
− 𝑞 0 𝑥, 𝑥   1 −  𝐹 2𝑥   

𝑚
+

𝑞 1 𝑥 ,𝑥 

𝑚+1
 1 −  1 −  𝐹 2𝑥   

𝑚+1
 ,                                      (2.15) 

where 𝑞 0 𝑥, 𝜌 =
𝑓1 𝑥−ρ +𝑓1 𝑥+ρ 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
, 𝑞 1 𝑥, 𝜌 =

𝑞 0
′  𝑥,𝜌 

𝑓 𝑥−𝜌 +𝑓 𝑥+𝜌 
, 

           𝑞 0 𝑥, 0 =
𝑓1 𝑥 

𝑓 𝑥 
, 𝑞 0 𝑥, 𝑥 =  

𝑓1 0 +𝑓1 2𝑥 

𝑓 0 +𝑓 2𝑥 
, and  𝑞 1 𝑥, 𝑥 =

𝑞 0
′  𝑥,𝑥 

𝑓 0 +𝑓 2𝑥 
. 

Substituting (2.14) and  (2.15) in to (1.1) we obtain  

𝑅𝑚  𝑥 ≤
2𝑝1𝑝2𝑓1 𝑥 𝑓2 𝑥 

𝑓2 𝑥 
+  1 −

𝑝1𝑝2𝑓1 𝑥 

𝑓 𝑥 
𝑞0 𝑥, 𝑥 −

𝑝1𝑝2𝑓2 𝑥 

𝑓 𝑥 
𝑞 0 𝑥, 𝑥   1 −  𝐹 2𝑥   

𝑚
  

                                       +
𝑝1𝑝2 1− 1− 𝐹 2𝑥   

𝑚+1
 

 𝑚+1 𝑓 𝑥 
  𝑓1

 𝑥 𝑞1
 𝑥, 𝑥 +𝑓2

 𝑥 𝑞 
1
 𝑥, 𝑥                                                                    (2.16) 

Now, we evaluate 𝑅𝑚 , by substituting (2.16) in (1.4) we obtain 

𝑅𝑚 = 𝑃 𝜃′ ≠ 𝜃 ≤    
2𝑝1𝑝2𝑓1 𝑥 𝑓2 𝑥 

𝑓2 𝑥 
 𝑓 𝑥  𝑑𝑥

∞

0
  

                               +    1 −
𝑝1𝑝2𝑓1 𝑥 

𝑓 𝑥 
𝑞0 𝑥, 𝑥 −

𝑝1𝑝2𝑓2 𝑥 

𝑓 𝑥 
𝑞 0 𝑥, 𝑥   1 −  𝐹 2𝑥   

𝑚
 𝑓 𝑥  𝑑𝑥

∞

0
  

                               +  
𝑝1𝑝2 1− 1− 𝐹 2𝑥   

𝑚+1
 

 𝑚+1 𝑓 𝑥 
  𝑓1 𝑥 𝑞1 𝑥, 𝑥 +𝑓2 𝑥 𝑞 1 𝑥, 𝑥   𝑓 𝑥  𝑑𝑥

∞

0
  

                                =   
2𝑝1𝑝2𝑓1 𝑥 𝑓2 𝑥 

𝑓 𝑥 
 𝑑𝑥

∞

0
+   1 −  𝐹 2𝑥   

𝑚
𝑓(𝑥) 𝑑𝑥

∞

0
  

                                −𝑝1𝑝2     𝑓1 𝑥 𝑞0 𝑥, 𝑥 + 𝑓2 𝑥 𝑞 0 𝑥, 𝑥   1 −  𝐹 2𝑥   
𝑚
  𝑑𝑥

∞

0
 

                                +
𝑝1𝑝2

 𝑚+1 
    𝑓1 𝑥 𝑞1 𝑥, 𝑥 +𝑓2 𝑥 𝑞 1 𝑥, 𝑥   1 −  1 −  𝐹 2𝑥   

𝑚+1
   𝑑𝑥

∞

0
  

                                ≤   
2𝑝1𝑝2𝑓1 𝑥 𝑓2 𝑥 

𝑓 𝑥 
 𝑑𝑥

∞

0
+  𝑓(𝑥). 𝑒−2𝑚𝐹(2𝑥) 𝑑𝑥

∞

0
   

                                −𝑝1𝑝2     𝑓1 𝑥 𝑞0 𝑥, 𝑥 + 𝑓2 𝑥 𝑞 0 𝑥, 𝑥   1 −  𝐹 2𝑥   
𝑚
  𝑑𝑥

∞

0
 

                                +
𝑝1𝑝2

 𝑚+1 
    𝑓1 𝑥 𝑞1 𝑥, 𝑥 +𝑓2 𝑥 𝑞 1 𝑥, 𝑥   1 −  1 −  𝐹 2𝑥   

𝑚+1
   𝑑𝑥,

∞

0
  

since 𝐹 2𝑥 ≥ 𝐹 𝑥   𝑒−2𝑚𝐹(2𝑥) ≤ 𝑒−2𝑚𝐹(𝑥), then we have 

 𝑓(𝑥). 𝑒−2𝑚𝐹(2𝑥) 𝑑𝑥 ≤
∞

0
 𝑓(𝑥). 𝑒−2𝑚𝐹(𝑥) 𝑑𝑥
∞

0
=

−1

2𝑚
  𝑒−2𝑚𝐹(𝑥) 

0

∞
=

1

2𝑚
 1 − 𝑒−2𝑚) .  

Then 
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𝑅𝑚 ≤ 𝑅∞ +
1

2𝑚
 1 − 𝑒−2𝑚) − 𝑝1𝑝2     𝑓1 𝑥 𝑞0 𝑥, 𝑥 + 𝑓2 𝑥 𝑞 0 𝑥, 𝑥   1 −  𝐹 2𝑥   

𝑚
  𝑑𝑥

∞

0
  

                           +
𝑝1𝑝2

 𝑚+1 
    𝑓1 𝑥 𝑞1 𝑥, 𝑥 +𝑓2 𝑥 𝑞 1 𝑥, 𝑥   1 −  1 −  𝐹 2𝑥   

𝑚+1
   𝑑𝑥

∞

0
  

We can apply this theorem for some important distributions having unbounded support 𝑆 =  0,∞ .  
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