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Abstract. In the present paper an efficient algorithm will be established for the effects of atmospheric refraction on the 

equatorial coordinates of a star valid for any zenith distance. The algorithm uses two new iterative schemes, the first is 

linear iterative scheme for the equatorial coordinates ),(   due to atmospheric refraction. The second is the quadratic 

Newton iterative scheme for obtaining the true zenith distance from Bennent formulae for the atmospheric refraction. 
Description of the algorithm was also given together with numerical applications.                                                                    
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1. Introduction 

Atmospheric refraction was mentioned as early as the first century A.D. by Cleomedes independently by Ptolemy (discussed 
in his Optics),ca.A.D.150.. and the refraction is the bending of light while passing from transparent homogenous medium to 
another transparent homogenous medium whose density is different from the first medium. The refraction follows  some  
basic roles ,of  these are :the incident ray ,,the refracted ray ,and the normal to the surface separating two media  at the point 
O(say), all lie in  same plane. The relation between the incident and the refracted angles  and   respectively, is given by  

                                                                                                         

μ
φsin 

ψsin 
 

where   is called the refractive index for the two media,μ  is  a constant quantity depending on the optical properties of 

the two media and can be determined by laboratory experiment. The value of  changes for the same ray, that is the 

refractive index for the blue light is different refractive index for the red light. This phenomenon is known in optics as light 
scattering and it is not important in studying the effect of the refraction on astronomical observations. In the vacuum of 

space 1 . The value of air depends on wavelength, temperature, and pressure as well. For example 000277.1  

is for green light 
oA5500 , for dry air for the conditions C15T o  and pressure Pa. 10013.1P 5  The value of 

   for the atmosphere at the Earth's surface, at temperature 0
o
C, and at atmospheric pressure 760 mm Hg is around 

1.0002927 for the yellow light where the human eye has maximum sensitivity. Atmospheric refraction plays important 
roles in many applications of spherical astronomy, of these as for example, in  top ocentric phenomena, such as the time 
of rising and setting of the Sun and Moon, and in theory in the prediction of local circumstances of eclipses. Also for 
observational reductions the effect of refraction on the equatorial coordinates of a star must be included.                             

Due to the importance of atmospheric refraction mentioned in few in the above, and due to the need of accurate 
equatorial coordinates of the stars, the present paper is devoted to establish an efficient algorithm for the effects of 
atmospheric refraction on the equatorial coordinates of a star valid for any zenith distance The algorithm uses two new 

iterative schemes, the first is linear iterative scheme for the equatorial coordinates ),(   due to atmospheric refraction. 

The second is the quadratic Newton iterative scheme for obtaining the true zenith distance from Bennent formulae for the 
atmospheric refraction. Description of the algorithm was also given together with numerical applications.                            

 Basic formulations 

Atmospheric refraction 2.1 

The starlight moves in straight line until it meets the outer surface of the atmosphere, then it suffers through its passage in 
the Earth's atmosphere series of refractions called astronomical refraction. Since the air density of the upper layers of the 
Earth's atmosphere is very rarer, then its effect on the refraction is small compared with that of total refraction.                   

Consequently, the effective layers on the refraction are those at few tens of kilometers from the Earth's surface, and in 
these lyres, the ray is bending till it reaches the observer. So the star is observed in a direction not parallel to its true 
direction.                                                                                                                                                                                    

For illustrating the above points, consider Fig.1 where z is the zenith, O is an observer on the Earth's surface and: 

1- The straight pass of a starlight from the star S(say) till it enter the effective region of the Earth's  atmosphere at the point A. 

2-After the entrance at the point A, the ray continuously bending till it reaches the observer at the point O. 

μ
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Fig.1.:The refraction of the starlight in the Earth's atmosphere 

3- The parallel line to SA is the position  of the star if there were no  atmospherical  refraction ,and this is the true direction 

of the star 

4-The observer will see the star in the direction TO which is the direction of the tangent for the curve of the refracted ray at 
the point O and this is the apparent (observed ) direction of the star. 

From the above, it is clear that the refraction changes the true poison of the  zenith of the star, that is ;the zenith distance 
decreases due to the refraction. 

2.2  General theorem for the atmospheric refraction 

       Assumptions of the theorem 

1-The Earth's is sregarded as sphere . 

2-The atmosphere made up of a large number of thin spherical layers, concentric with the Earth's center. 

3- Each layer has its own optical properties and ,in particular, its own refractive index 

       The formula 

The numerical formula for اthe mean refraction for the standard conditions which  are taken in practice to be: barometric 

pressure =760 mm Hg. and Temperature = .,C10o
 is  given by one of the following formulae 

ξ. tan8 0.066 tanξ4 58.29R 3  ,                                          (1) 

ξ tan4 0.082 tanξ6 58.27R 3                                              (2) 

where   is the observed zenith distance. The first formula is given by Smart[1956] while the second one has been 

derived by Meeus[2000]. 

Clearly both formulae (1) and (2) are not valid when the observed zenith distance   equal to
o90 . Also the formulae are 

insufficient when the zenith distance exceeds
o75 . 

It appears that, at high altitudes, the refraction is proportional to the tangent of the zenithal distance. 

2.3 Bennent formulae for the atmospheric refraction 

    In 1982 Bennent established a surprisingly simple formula for refraction, with good accuracy at all altitudes from 90
o
 to 

0
o
, this formula is : 

















4.4h

7.31
htan

1
R

0

0

 ,                                                  (3) 
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where ξ90h0  is   the apparent (observed) altitude in degrees, and R in  arc minute. 

According to Bennett, this formula is accurate to 0.07 arc minutes for all values of 0h .The largest error, 0.07 arc minute, 

occurs at 12
o
 altitude. 

Bennett also showed  how his formula can be  refined as follows  calculate R from equation (3), then add the correction 

R expressed in minutes of arc, where 

)13(14.7Rsin  0.06ΔR  ,                                                   (4) 

the expression between parentheses is expressed in degrees. Calculated in this way, the maximum error is stated to only 

0.015 arc minute, or 9.0  , for the whole altitude range   

2.4 The effects of the atmospheric pressure and temperature on the refraction 

In the above refraction formulae we assume that the observations are made at the sea level, when the atmospheric 

pressure is 760 mmHg, and temperature .C10o
We can get the value of the refraction at different temperature and 

pressure as follows: 

1-If the pressure at the Earth's surface in P  mmHg and the temperature t in degree Celsius, then the values of  R  

should be multiplied by the factor PTΔ ,where  

.
t273

283
  and  

760

P
Δ  ;  ΔΔΔ TPTPPT




 

2-If the pressure at the Earth's surface P  in  mb(Millbrae) and the temperature t in degree Celsius, then the values of  

R  should be multiplied by the factor PTΔ ,where  

.

.
t273

283
  and  

1010

P
Δ  ; ΔΔΔ TPTPPT




 

3. Computational developments  

In this section the computational developments needed for the design of our basic algorithm of the present paper will be 
established through the following subsections 

3.1 Transformations between the altitude and azimuth to the hour angle and declination 

Transformations formulae 

Assume that  A,a  are the altitude and azimuth of a star X and   ,H  are its hour angle and declination. From the 

known spherical triangle PZX we get  

                                    sinδ sin  a sinφ cos  a cosφcosA                                                         (5)        

                             Hcoscosφδ cossinφ δ sinan is                                                         (6) 

(7)                                                                       
cosacosφ

asin φsin sinδ
cosA


 

cosδcosφ

sinδsinφsina
cosH




                                                                  

(8)

        

 

where    is the given observer's latitude, then 

Equations (5) ,(8) could be used to find  ,H from (a,A). 
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Equations (6) ,(7) could be used to find  (a,A).from  .,H  . 

Before applying these equations, we have to remember the following important rule between the measurement of the 

azimuth A and the hour angle H.   

The measurement rule between A and H. 

If the star's azimuth is west, the hour angle is between hh 12,0  or180,0  (and vice versa).  

 If the star's azimuth is east, the hour angle is between hh 24,21  or360,180  (and vice versa) . 

Mathematically, these means that: 

If 0Asin  then H360H  ,where H on the right side is that computed from Equation (8).But ,if 

0Asin  ,then H remains as it is. 

If 0Hsin  then A360A  , where A on the right side is that computed from Equation (7).But ,if 

0Hsin  ,then A remains as it is. 

For practical applications we can unified ( may be to the first time) the two sets of Equations [(5),(8)], [(6),(7)] with the above 
measurement rule in the form: let 

 ),(   are the required coordinates, 

 )h,g(  are the given coordinates, 

),(   could be obtained according to the above measurement rule from the following equations: 

                                   Xsinξ 1                                                                                     (9)                    

                                                         

                               

 

 

















0g sinifYcos360

0g sinifYcos

η

1

1

                                   

(10) 

where 

                               cosφC,sinφS                                                                      (11) 

                           XcosgcoshCsinhSsinξ                                                             (12) 

                           .Y
cosξC

sinξSsinh
η cos 




                                                                    

(13) 

3.2 The effect of refraction on the right accession and declination of a star 

Let ),(   be the right accession and declination of a star respectively, and ),(  its corresponding coordinates due 

the atmospheric refraction R.  It could be shown that 

[e.g.Smart 1956] 

                         cscξHsin  cosφδsec Rαα                                                    (14) 

                          δsec   cscξ )δsin  ξ cos-R(sinφδδ                                      (15) 

where H  is the hour angle associated  with α is written in terms of the local sidereal time LST  as: 

H=LST- α .                                                                     (16)           

Since the unknown coordinates ( , )   appear  also  in the right hand side of the above equations  this  leads us to 

purpose the following linear iterative scheme: 
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1

i 1

  y α

y α R secδ cosφ  sin(LST-y)cscξ  ;i 1,2,3,4,



  
                                                  (17)

 

 then  5y  Also ,   could be determined from linear iterative scheme: 

1

i 1 i i

  x δ

x δ R(sinφ-cos ξ sin x ) cscξ   secx ;i 1,2 ,3,4 ,



  
                                               (18) 

then  .x5 Note that the four iterations in Equations (17) and (18) are sufficient for computing ),(   because in 

general   and   are small.                                                                                                                                               

3.3 The value of the atmospheric refraction R if the true zenith distance z is known 
using Bennent's formulae  

Substituting Rz   into Equation (3) it becomes 

0
Rz94.4

7.31
RztanRG(R) 










 ,                                                                   (19) 

where  z  and   are respectively the apparent and the true zenith distances. 

Equation (19) is a transcendental equationin R, and usually solved by iterative methods, for example Newton iterative 

method.  

For the application of Newton method we need beside G(R) the following : 

1-The first derivative of the function G( R) with respect to R and is given as  

.
)Rz4.94(

31.7
Rzsec

)Rz4.94(

31.7
1)R(G 2

2 






















 

2-The maximum number of iterations "itmax"(say). 

3- The initial guess 0R  of the root of Equation (19). We take 0R 0  , assuming the solution of Equation (19) is R

,then we can check its accuracy by the condition that 

                                       ε,|)R
~

G(|                                                                                                   (20) 

where ε is an accuracy criterion around 
1510

. 

4. Computational Algorithm 

In this section, we shall develop an efficient iterative algorithm for the effects of atmospheric refraction on the equatorial 
coordinates  of a star valid  for any zenith distance .The design of the algorithm  is given as follows 

4. 1 Algorithm I 

●Input 

P; The value of atmospheric pressure at the date in question in In-Hg, (or any other unit) 

T: The value of temperature  at the date in question in C
o
 (or any other unit). 

 : The right ascension of the star in degrees.  

 : The declination of the star in degrees. 

 :The latitude in degrees.  

LST: The local sidereal time at the date in question in degrees  

● Output 

:    The right ascension of the   star due to the refraction in radian  
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:    The declination of the   star due to the refraction in radian  

● Computational steps  

1-Using  h  and  LSTg
 
into the algorithm of Section 3.1 to find  /180)a90(z 0

. 

2-Using algorithm of Section 3.3.to find R by Newton iterative method with itmax .6 . 

3- T)283/(273   ;   760/4.25P TP   

4- TPRR   

5- .3600/Rz   

6- Using algorithm of Section 3.2 to compute both ),(  in radian 

7-End 

4. 2 Numerical example 

In order to apply algorithm I, we generate 30 real random values of : 

P: Between 10 and  50 In-Hg. 

T: Between 0 and  50 C
o. 

 : Between 0 and  360 degrees  

 : Between 0 and  90 degrees 

 : Between 0 and  90 degrees 

LST:  Between 4 and  23.5 hours. 

Table I of Appendix A list the input and output of algorithm I 

In concluding the present paper ,we stress ,an efficient algorithm was established for the effects of atmospheric  refraction 
on the equatorial coordinates  of a star valid  for any zenith distance The algorithm uses two new iterative schemes, the 

first is linear iterative scheme for the equatorial coordinates ),(   due to atmospheric refraction. The second is the 

quadratic Newton iterative scheme for obtaining the true zenith distance from Bennent formulae for the atmospheric 
refraction. Description of the algorithm was also given together with numerical applications                                                .   
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Appendix A 
Table I:The effect of refraction 

on the 

The right ascension and declination 

of some stars 

  

 



   



   


18.7096  25.2285  340.586  75.6465  17.5127  4.12676  340.773  75.6432  0.186693  0.00326499  

28.7132  32.3226  27.4713  48.2766  62.3308  22.6633  27.4618  48.2831  0.00943643  0.00651428  
44.3142  30.9181  302.53  70.9737  14.3449  21.4646  302.56  70.95  0.029944  0.0237761  

21.7634  35.6595  109.938  71.3004  47.2506  4.08604  109.908  71.2967  0.0302747  0.00361171  

44.1812  2.24614  130.55  33.6414  48.8639  7.97074  130.547  33.6458  0.00246022  0.00439723  
11.886  11.7739  321.046  50.8589  42.725  11.1251  320.977  50.9877  0.0695907  0.12871  
23.7579  10.8711  50.7051  80.8285  44.3159  5.23356  50.7475  80.8181  0.0424076  0.0104266  

38.0564  9.10689  94.8356  6.53178  25.9434  13.069  94.7502  6.48805  0.0853696  0.0437235  

41.9271  25.693  143.784  43.0908  73.9643  22.8106  143.78  43.1213  0.00414177  0.0305627  
29.1153  5.22227  136.747  31.9527  51.2204  17.0681  136.812  32.0358  0.0650827  0.0830957  
23.3385  24.337  213.612  18.8149  83.397  12.178  213.609  18.8503  0.00243649  0.0354255  
14.7717  23.008  323.249  0.656034  24.55  20.4983  323.244  0.66337  0.00447447  0.00733603  
43.3447  10.2407  262.29  48.2991  69.5226  5.92168  262.288  48.3295  0.00206543  0.0304162  
21.4196  38.9299  104.367  66.1843  0.831179 16.4567  104.289  66.1463  0.078108  0.0379971  

23.8182  2.24194  180.695  12.5746  16.5215  10.8361  180.69  12.5759  0.00502951  0.0013018  
20.3451  43.0378  320.513  71.9546  4.52672  4.35414  322.446  72.1169  1.93315  0.162308  
24.0114  16.6098  170.017  52.284  28.7123  7.07492  169.983  52.2837  0.0337296  0.000306243  

38.9267  3.86181  70.6306  63.3835  12.2858  5.22039  70.6381  63.3636  0.00752138  0.019925  

10.732  10.2829  7.46697  86.1749  10.6948  22.9966  7.11178  86.1175  0.355192  0.057392  

36.478  45.2131 0.668495  15.2193  83.0765  11.1532 0.671503 15.3222  0.00300703  0.102819  
36.2353  29.6737  218.959  43.5764  35.3098  19.6935  218.992  43.5851  0.0329418  0.00861727  
19.1673  40.8596  228.947  71.8284  67.2566  18.7395  228.963  71.8294  0.0161074  0.00102272  
13.5166  8.5168  342.787  33.9026  53.8076  21.6982  342.784  33.9087  0.00364788  0.00612183  
49.4985  35.9592  6.36487  68.0451  16.8348  6.41926  6.51659  68.0512  0.151716  0.00616285  
28.3324  33.9806  87.7911  49.9654  51.6625  18.3461  87.7815  50.0405  0.00958538  0.0750846  
36.8776  1.04559  323.382  8.69733  31.1111  16.227  323.322  8.73159  0.0598685  0.0342541  
29.2125  18.0337  270.031  54.4767  65.8594  22.5252  270.043  54.4844  0.01254  0.00778059  
32.5986  10.0834  71.5871  72.3131  67.8041  13.9086  71.6042  72.324  0.0170522  0.0109464  
29.4109  40.7915  317.861  67.608  1.78742  20.9675  317.855  67.5721  0.00602456  0.0359038  

16.665  22.7893  311.925  83.6651  9.85526  20.968  311.947  83.6102  0.0228274  0.0548306  

 

)Hg(P )C(T o o o
o )h(LST

o  o 
o o

 


