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ABSTRACT 

This paper deals with the oscillation of third order impulsive differential equations with delay. The results of this paper 
improve and extend some results for the differential equations without impulses. Some examples are given to illustrate the 
main results.  
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1 INTRODUCTION 

This paper concerned with the oscillatory and asymptotic behavior of third order impulsive differential equation of the form 
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where   and   are nonnegative constants with }{,> kt  is a sequence of impulsive moments which satisfies 

 <<<<0 10 kttt  with 


=lim k
k

t  and .>1 kk tt   Throughout this paper, we will assume that the 

following assumptions are satisfied:   

 (H1) ba,  and p  are positive continuously differentiable functions with 0 (t) 1;p p    

 (H2) ))[0,),,([ 0  tCq  and )(tq  is not identically zero on any ray of the form ),[ * t  for all ;0

* tt    

 (H3) kkk cba ,,  are positive constants.  

   Let J   be an interval. We define 
1( , )PC J  = { : : ( )x J x t  is differentiable for 0t  and ,ktt   

)( 
ktx  and )( 

ktx  exist and )}.(=)( kk txtx  
 

  By a solution of equation (1.1), we mean a real function )(tx  such that 
1, , ( , )x x x PC J    which satisfies equation 

(1.1). Our attention is restricted to those solutions )(tx  of equation (1.1) which exist on half line ),[ 0 t  and satisfy 

0>}|:)({|sup xTttx   for all 
0.xT t  It will be assumed that equation (1.1) has solutions which are nontrivial for large 

.t  Such a solution of equation (1.1) is said to be non-oscillatory if it is eventually positive or eventually negative, otherwise 

it is oscillatory. 

   It is well known that there is a drastic difference in the behavior of solutions between differential equations with impulses 
and those without impulses. Some differential equations are non-oscillatory, but they may become oscillatory if some proper 
impulse controls are added to them , see [2]. 

  In recent years, the oscillation theory and asymptotic behavior of impulsive differential equations and their applications 
have been and still receiving intensive attention. But to the best of our knowledge, it seems that little has been done for 
oscillation of third order impulsive differential equations[10]. 

  Our aim in this paper is to establish some new sufficient conditions which ensure that solutions of equation (1.1) are 

oscillatory or converge to zero as t  tends to .  In particular, we extend the results in [9, 7] to the impulsive differential 

equation (1.1). 

In this paper, we shall study the behavior of solutions of equation (1) under the following three cases:  
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In the following, all functional inequalities considered are assumed to hold eventually, that is, they are satisfied for all 

sufficiently large .t   

2  Main results 

In this section, we present the main results. We write ).()()(=)(  txtptxtz  Furthermore, assume that 

11,  kk ba  and 1.kc  First we begin with a useful lemma, which is borrowed from [6].  

Lemma 2.1  Suppose   

   (i)  the sequence Nkkt }{  satisfies  <<<<0 10 kttt  with ;=lim 


k
k

t   

   (ii)  , :m m 
    are right continuous on \{ : },kt k    there exist the lateral limits   

)(),(),(  
kkk tmtmtm  and )( 

ktm  with ;1,2,3=),(=)( ktmtm kk


  

   (iii)  for 1,2,3,=k  and ,0tt   we have  

                                ,),()()()( ktttqtmtptm   (2.1) 

                               kkkk tmtm   )()(
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where , ( , ), kp q C     and k  are real constants with 0.k  Then the following inequality holds  
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Theorem 2.1  Assume that (1.2) holds. If there exists a function  ,),[ 0

1  tC  )(0,  for all sufficiently large 

,0123 ttttt   one has  
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where 1L  and 2L  are positive constants, then every solution )(tx  of equation (1.1) is either oscillatory or satisfying 

0.=)(lim tx
t 
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Proof. Let )(tx  be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that 

0,>)(0,>)( txtx  and 0>)( tx  for all .01 ttt   For ktt   from (1.2), there exists 01 ttt   such 

that the following two cases arise:   

   (1) 0;]))()()(([0,>))()((0,>)(0,>)(  tztbtatztbtztz   

   (2) 0]))()()(([0,>))()((0,<)(0,>)(  tztbtatztbtztz   

for all .12 ttt   Assume that case(1) holds. For ktt   define a function   by  
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 Then 0,<)(1,2,=0,<)( tandktk  
 for .2tt   Differentiating (2.6), we have  
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 Since 0,>)(tz  we have  

 .,),())((1)( 2ttandtttztptx k   (2.8) 

It follows from equation (1.1), (2.7) and (2.8) that  
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 Using (2.11) and (2.12) in (2.9), we obtain  
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 Since >1 kk tt   for each ,Nk  we have  

 .<< 11   kkk ttt   (2.14) 

 Since xxx ,,  are continuous on ],,( 1kk tt  we have from the inequality (2.14) that  

 )()()(=)(  

kkkk txtptxtz  

 )()()(=  kkkk txtptxa  

 .1,2,=),( ktz k  (2.15) 

 Now  

 )()()()()(=)(   

kkkkkk txtptxtptxtz  

 )()()()()(=   kkkkkk txtptxtptxb  

 .1,2,=),( ktzb kk
  (2.16) 

 Similarly  

 )()()()(2)()()(=)(   

kkkkkkkk txtptxtptxtptxtz  

 )()()()(2)()()(=  
kkkkkkkk txtptxtptxtptxc  

 .1,2,=),( ktz k
  (2.17) 

 Now from (2.16) and (2.17), we have  

 


















)()(

)()()()(
)()(=)(

kk

kkkk
kkk

tztb

tztbtztb
tatt   



   ISSN 2347-1921 
 

827 | P a g e                         J a n u a r y  2 7 ,  2 0 1 4  

 






 
















)(

)(

)(

)(
)()(=

k

k

k

k
kk

tb

tb

tz

tz
tat  

 






 







)(

)(

)(

)(
)()(

k

k

kk

k
kk

tb

tb

tzb

tz
tat  

 .1,2,=),(
1

kt
b

k

k

  (2.18) 

 Using Lemma 2.1 in (2.13) and (2.18), we obtain  
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 Taking limit as t  and using (2.4) we get a contradiction with 0.<)(t  

Next assume that case (2) holds. Since )(tz  is nonincreasing, we have 0.)(  Ltz  If 0,>L  then for any 

0,>  there exists 34 tt   suchthat ,>)(> LtzL   eventually for .4tt   Choose .
2

)(1
=

p

pL 
  Then for 

4, tttt k   we have  

     )(>)()()(=)(   tpzLtxtptztx  

 )(>  LpL  

 .,=
2

)(1
= 1 sayL

pL 
 

 From equation (1.1), we have  

 .,),()()(=))))()()()(()((( 41 tttttqLtxtqtxtptxtbta k    (2.19) 

 For 1,2,=k   

 )()()()()(=)(   

kkkkkk txtptxtptxtz  
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kkkkkk txtptxtptxb  

         ).( kk tzb   (2.20) 

 Also  
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kkkkkkkk tztbtztbtatztbta  

               )()()()()((= kkkkkk tztbtzbtbta   

               .))()()((  kkkk tztbtab  (2.21) 

 Using Lemma 2.1 in (2.19) and (2.21), we obtain  
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 Using Lemma 2.1 in (2.15) and (2.22), we obtain  
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 Taking limit as t  in the last inequality we get a contradiction with (2.5).Therefore 0.=)(lim tz
t 

 Since 

),()( tztx   we have 0.=)(lim tx
t 

This completes the proof.  

Theorem 2.2  Assume that (1.3) holds and there exists a function ))(0,),,(([ 0

1  tC  such that for all sufficiently 

large ,0123 ttttt   we have (2.4) and (2.5). If  
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 then every solution )(tx  of equation (1.1) is either oscillatory or 0.=)(lim tx
t 

  

Proof. Let )(tx  be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that 

0,>)(0,>)( txtx  and 0>)( tx  for .01 ttt   For 1, tttt k   from (1.3), there exist three possible 

cases (1), (2)(as in Theorem 2.1) and   

    (3) 0.]))()()(([0,<))()((0,>)(0,>)(  tztbtatztbtztz   

For the cases (1) and (2), we obtain the conclusion from Theorem 2.1. Now assume that case (3) holds. Since 

))()()((  tztbta  is nonincreasing, we have  

 .,))()()(())()()(( 45 tttstztbtaszsbsa   

 Dividing the above inequality by )(sa  and integrating from t  to ,l  we obtain  



   ISSN 2347-1921 
 

829 | P a g e                         J a n u a r y  2 7 ,  2 0 1 4  

 .
)(

))()()(()()()()(
sa

ds
tztbtatztblzlb

l

t  

Letting ,l  we have  

           .
)(

))()()(()()(0
sa

ds
tztbtatztb

t


  

That is,  

 1.
)()()(

))()()((





 



sa

ds

tztb

tztbta

t
 (2.25) 

 Define a function   by  

 .,,
)()(

))()()((
=)( 5tttt

tztb

tztbta
t k 




  (2.26) 

 Then 0,>)(1,2,=0,>)( tandktk  
 for .5tt   Hence from (2.25) and (2.26), we obtain  

 1.)()( tt   (2.27) 

 Differentiating (2.26) gives  

 .,,
))()((

))()(())()()((

)()(

)))()()(((
=)( 52

tttt
tztb

tztbtztbta

tztb

tztbta
t k 









  

From equation (1.1), (2.8) and (2.26), we obtain  

 .,,
)(

)(

)()(

)(
))()(1(=)( 5

2

tttt
ta

t

tztb

tz
tptqt k 









    

         (2.28) 

From the third inequality in case (3), we see that  

 ).(
)(

)()(
5

tz
sb

ds
tbtz

t

t
   (2.29) 

Hence,  

                               5

5

,0,)

)(

)(
( tttt

sb

ds

tz
kt

t




 

which implies that  

                                .

)(

)(

)(

)(

5

5

sb

ds

sb

ds

tz

tz
t

t

t

t












 (2.30) 

 Using (2.28) and (2.29) in (2.30), we have  
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 For 1,2,=k  from the definition of ),(t  we have  
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 Using Lemma 2.1 in (2.32) and (2.33) for all ,56 tt   we obtain  
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Taking limit as t  in the last inequality, we obtain a contradiction with (2.23) due to (2.27). Now the proof is complete.  

Theorem 2.3 Assume that (1.4) holds and and there exists a function  ,),([ 0

1  tC  )(0,  such that for all 

sufficiently large ,0123 ttttt   we have (2.4) ,(2.5) and (2.23). If  
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 then every solution )(tx  of equation (1.1) is either oscillatory or 0.=)(lim tx
t 

  

Proof. Let )(tx  be a nonoscillatory solution of equation (1.1). Without loss of generality, we may suppose that 

0,>)(0,>)( txtx  and 0>)( tx  for .01 ttt   For 1, tttt k   from (1.4), there exist four possible 

cases (1), (2), (3)(as in Theorem 2.2) and   

 (4) 0,]))()()(([0,<))()((0,<)(0,>)(  tztbtatztbtztz   

For the cases (1),(2) and (3), we obtain the conclusion from Theorem 2.2. Now assume that case (4) holds. Since 

)()( tztb   is non increasing, we have  
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 From equation (1.1), (2.37) and (2.39), we have  
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 Again using Lemma 2.1 in (2.41) and (2.43), we obtain  
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Dividing the last inequality by b(t) and using (2.15) in Lemma 2.1, we have  
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Taking limit as t  in the last inequality we get a contradiction with (2.34). This completes the proof.  

3  EXAMPLES 

In this section we provide two examples to illustrate the main results.  

Example 3.1 Consider the following third order impulsive differential equation 
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  It is easy to see that all 

the conditions of Theorem 2.2 are satisfied with 1.=)(t  Hence any solution of equation (2.34) is either oscillatory or 

converging to zero. 

Example 3.2 Consider the following third order impulsive differential equation 
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Here 1.=,
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tpetbta   It is easy to see that all the 

conditions of Theorem 2.3 are satisfied with 1.=)(t  Hence any solution of equation (3.1) is either oscillatory or 

converging to zero. 
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