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ABSTRACT 

In this paper, we are presenting Hermite collocation method to solve numerically the Fredholm-Volterra-Hammerstein 
integral equations. We have clearly presented a theory to find ordinary derivatives. This method is based on replacement 
of the unknown function by truncated series of well knownHermite expansion of functions. The proposed method converts 
the equation to matrix equation which corresponding to system of algebraic equations with Hermite coefficients. Thus, by 
solving the matrix equation, Hermite coefficients are obtained. Some numerical examples are included to demonstrate the 
validity and applicability of the proposed technique. 
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1. INTRODUCTION 

The linear and non linearFredholm and Volterra integral equation have been a growing interest inrecent years ([21], [22]). 
This are an important branch of modern mathematics and arise frequently in many applied areas which include 
engineering, mechanics, physics, chemistry, astronomy and biology ([1], [5]). There are several methods for approximating 
the solution of linear, non-linear integral equations ([6]-[10], [13]). and solving fractional integro-differential equations 
([11],[12]). 

We consider the Hammerstein integral equations in the forms ([21],[22]):- 

𝑧 𝑦 = 𝑓 𝑦 + 𝜆1  𝐾1
1

0
 𝑦, 𝑟 𝐹 𝑧 𝑟  𝑑𝑟 + 𝜆2  𝐾2

𝑦

0
 𝑦, 𝑟 𝐺 𝑧 𝑟  𝑑𝑟.(1) 

Where 𝑓 𝑦 ,  𝐾1 𝑦, 𝑟  and 𝐾2 𝑦, 𝑟  are given functions, 0 ≤ 𝑦, 𝑟 ≤ 1, and  𝜆1 , 𝜆2 are arbitrary constants.  

Hermite polynomials are widely used in numerical computation. One of the advantages of using Hermite polynomials as a 
tool for expansion functions is the good representation of smooth functions by finite Hermite expansion provided that the 

function 𝑧 𝑦  is infinitely differentiable ([2], [15], [18], [20]). The Hermite collocation method in [16] solving convection 

diffusion equation, in [17] solving linear differential equations and in [19] solving linear complex differential equation. 

The paper is organized as follows: Section 2, we will study some properties of the Hermite polynomials. In Section 3, we 
take his idea about an approximate formula of the integral derivative. In Section 4, procedure solution using the proposed 
numerical method. In Section 5, we give numerical implementation. In Section 6, the paper ends with a brief conclusion. 

2. Some properties of the Hermite polynomials  

Definition:-The Hermite polynomials are given by ([2], [20]):- 
 

𝐻𝑛 𝑦 =  −1 𝑛𝑒𝑦2 𝑑𝑛

𝑑𝑧𝑛
𝑒−𝑦2

. 

 

Some main properties of these polynomials are : 

The Hermite polynomials evaluated at zero argument 𝐻𝑛 0  and are called Hermite number as follows ([2], [20]):- 

 

 𝐻𝑛 0 =  
0,                                        𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑,

 −1 
𝑛

2 2
𝑛

2 𝑛 − 1 !            𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛,
 (2) 

 

Where   𝑛 − 1 ! is the factorial. 

The polynomials 𝐻𝑛 𝑦  are orthogonal with respect to the weight function 𝜔 𝑦 = 𝑒−𝑦2
with the following condition [2]:- 
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 𝐻𝑛 𝑦 𝐻𝑚

∞

−∞

 𝑦 𝜔 𝑦 𝑑𝑡 =  𝜋2𝑛𝑛! 𝛿𝑛𝑚 . 

3.An approximate formula of the fractional derivative 

The Hermite polynomials are defined on ℝ and can be determined with the aid of the following recurrence formula ([2], 

[14]):- 

𝐻𝑛+1 𝑦 = 2𝑦𝐻𝑛 𝑦 − 2𝑛𝐻𝑛−1 𝑦 ,      𝐻0 𝑦 = 1,   𝐻1 𝑦 = 2𝑦,    𝑛 = 1,2, … 

The analytic form of the Hermite polynomials of degree 𝑛 is given by [2] 

𝐻𝑛 𝑦 = 𝑛!  
 −1 𝑘2𝑛−2𝑘

 𝑘 ! 𝑛−2𝑘 !
𝑦𝑛−2𝑘 .

 
𝑛

2
 

𝑘=0                                                                                      (3) 

In consequence, for the p-th derivatives of Hermite polynomials the following relation hold:  

 𝐻𝑛
 𝑝 

 𝑦 = 2𝑝 𝑛 !

 𝑛−𝑝 !
𝐻𝑛−𝑝 𝑦 = 𝑣𝑛 ,𝑝𝐻𝑛−𝑝 𝑦 ,    𝑣𝑛 ,𝑝 = 2𝑝 𝑛 !

 𝑛−𝑝 !
.  (4) 

The function  𝑧 𝑦 ∈ 𝐿𝜔 𝑦 
2  ℝ , may be expressed in terms ofHermite polynomials as follows 

𝑧 𝑦 =  𝑐𝑘𝐻𝑘 𝑦 ∞
𝑘=0 (5)      

 

where the coefficients 𝑐𝑛  are given by 

𝑐𝑛 =
1

 𝜋2𝑛𝑛!
 𝑧 𝑦 𝐻𝑛 𝑦 

∞

−∞
𝜔 𝑦 𝑑𝑦,       𝑛 = 0,1, …(6) 

In practice, only the first  𝑚 + 1 −terms of Hermite polynomials are considered. Then we have [2] 

𝑧𝑚 𝑦 =  𝑐𝑛𝐻𝑛 𝑦 .𝑚
𝑛 (7) 

The main approximate formula of the ordinary (integral) derivative is given in the following theorem.  

Theorem 1.  Let 𝑧 𝑦  be approximated by Hermite polynomials as (7) and also suppose 𝑞 > 0, then 

 𝐷𝑞 𝑧𝑚 𝑦  ≅   𝑛!  𝑐𝑛𝐵𝑛 ,𝑘   
 𝑞 

𝑦𝑛−2𝑘−𝑞ℓ
𝑘=𝑞  𝑚

𝑛=𝑞 , (8) 

whereℓ =
𝑛−𝑞

2
 and 𝐵𝑛 ,𝑘

 𝑞 
is given by 

𝐵𝑛 ,𝑘
 𝑞 

=
 −1 𝑘2𝑛−2𝑘

 𝑘 !  𝑛 − 2𝑘 − 𝑞 !
 

Proof: since the non linear operation we have 

𝐷𝑞 𝑧𝑚 𝑦  =  𝑐𝑛𝐷
𝑞(𝐻𝑛 𝑦 ).𝑚

𝑛=0                                                                                    (9) 

It is clear that 𝐷𝑞𝐻𝑛 𝑦 = 0, 𝑛 = 0,1, … , 𝑞 − 1, 𝑞 > 0 Therefore, for 𝑁 = 𝑞, 𝑞 + 1, … , 𝑚 . 

Substituting equation (3) in (9) we have 

𝐷𝑞 𝑧𝑚 𝑦  =  𝑛! 𝑐𝑛

𝑚

𝑛=0

 
 −1 𝑘2𝑛−2𝑘

 𝑘 !  𝑛 − 2𝑘 !
𝐷𝑞𝑦𝑛−2𝑘 .

 
𝑛

2
 

𝑘=0

 

𝐷𝑞 𝑧𝑚 𝑦  =  𝑛!𝑚
𝑛=𝑞  𝑐𝑛

 −1 𝑘2𝑛−2𝑘

 𝑘 ! 𝑛−2𝑘−𝑞 !
𝑦𝑛−2𝑘−𝑞 .

 
𝑛

2
 

𝑘=0                                                  (10) 

 

4. Procedure solution using the proposed numerical method 

We consider the Fredholm-Volterra integral equation (1), ([21], [22]). 

We substitute the Eq. (7) into Eq. (1) we get:- 
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 𝑐𝑛𝐻𝑛 𝑦 𝑚
𝑛=0 = 𝑓 𝑦 + 𝜆1  𝐾1

1

0
 𝑦, 𝑟 𝐹  𝑐𝑛𝐻𝑛 𝑟 

𝑚
𝑛=0  𝑑𝑟

+𝜆2  𝐾2
𝑦

0
 𝑦, 𝑟 𝐺  𝑐𝑛𝐻𝑛 𝑟 

𝑚
𝑛=0  𝑑𝑟.

(11) 

 

On the Hermite collocation points depended by:- 

𝑦𝑖 = −1 +
2

𝑚
𝑖,        𝑖 = 0,1, … , 𝑚  (12) 

we collocate Eq.(11)  with the points (12) to obtain 

 𝑐𝑛𝐻𝑛 𝑦𝑝 = 𝑓 𝑦𝑗  + 𝜆1  𝐾1
1

0
 𝑦𝑝 , 𝑟 𝐹  𝑐𝑛𝐻𝑛 𝑟 

𝑚
𝑛=0  𝑑𝑟𝑚

𝑛=0

+𝜆2  𝐾2
𝑦𝑝

0
 𝑦𝑝 , 𝑟 𝐺  𝑐𝑛𝐻𝑛 𝑟 

𝑚
𝑛=0  𝑑𝑟.

                             (13) 

The integral terms in Eq. (13) can be found using composite trapezoidal integration technique as:  

 𝐾1
1

0
 𝑦𝑝 , 𝑟 𝐹 𝑧 𝑟  𝑑𝑟 ≅

ℎ

2
 𝛺1 𝑟0 + 𝛺1 𝑟𝑚 + 2  𝛺1 𝑟𝑘 

𝑚−1
𝑘=1  .                           (14) 

Where 𝛺1 𝑟 = 𝐾1 𝑦𝑗 , 𝑟 𝐹 𝑧 𝑟  , ℎ =
1

𝑚
, for an arbitrary integer  𝑚, 𝑟𝑖 = 𝑖ℎ, 𝑖 = 0,1, … , 𝑚 

And 

 𝐾2
𝑦𝑝

0
 𝑦𝑝 , 𝑟 𝐺 𝑧 𝑟  𝑑𝑟 ≅

ℎ𝑝

2
 𝛺2 𝑟0  + 𝛺2 𝑟𝑚    + 2  𝛺2 𝑟𝑘  𝑚−1

𝑘=1  .                         (15) 

Where  𝛺2 𝑟 = 𝐾2 𝑦𝑝 , 𝑟 𝐺 𝑧 𝑟  , ℎ𝑝 =
𝑦𝑝

𝑚
,  for an arbitrary integer  𝑚, 𝑟𝑖 = 𝑖ℎ. 

Eq. (13) gives 𝑚 + 1   system of linear or non-linear algebraic equations, which can be solved for 𝑐𝑘 , 𝑘 = 0,1, … , 𝑚.So 

the unknown function  𝑧 𝑦     can be found. 

5. Numerical Implementation 

In this section, to a chive the validity, the accuracy and support our theoretical discussion of the proposed method, we give 
some computational results of numerical examples. 

Example1. Consider Eq. (1) with the following functions and coefficients ([21], [22]). 

𝑓 𝑦 = 𝑦3 −  6 − 2𝑒 𝑒𝑦 ,   𝜆1 = 1,      𝜆2 = 1, 

𝐾1 𝑦, 𝑟 = 𝑒 𝑦+𝑟 ,    𝐾2 𝑦, 𝑟 = 0,    𝐹 𝑧 𝑟  = 𝑧 𝑟 ,     𝐺 𝑧 𝑟  = 0.   

Eq. (1) takes following the form  

𝑧 𝑦 = 𝑦3 −  6 − 2𝑒 𝑒𝑦 +  𝑒 𝑦+𝑟 1

0
𝑧 𝑟 𝑑𝑟.                                                                 (16) 

We apply the suggested method with 𝑚 = 3, and approximate the solution 𝑧 𝑦  as follows 

𝑧𝑚 𝑦 =  𝑐𝑛𝐻𝑛 𝑦 .3
𝑛=0                                                                                                          (17) 

By the same procedure in the previous section and using Eq. (13) we have  

 𝑐𝑛𝐻𝑛 𝑦 =

𝑚

𝑛=0

𝑦3 −  6 − 2𝑒 𝑒𝑦 +
ℎ

2
 𝛺1 𝑟0 + 𝛺1 𝑟𝑚 + 2  𝛺1 𝑟𝑘 

𝑚−1

𝑘=1

 , 

 𝑐𝑛𝐻𝑛 𝑦𝑝 −3
𝑛=0  𝑦𝑝

3 −  6 − 2𝑒 𝑒𝑦𝑝  −
ℎ

2
 𝛺1 𝑟0 + 𝛺1 𝑟3 + 2  𝛺1 𝑟𝑘 

2
𝑘=1  = 0,

𝑝 = 0,1,2.
   (18) 

Where  𝛺1 𝑟 = 𝑒 𝑟+𝑦𝑝   𝑐𝑛𝐻𝑛 𝑦𝑝 
3
𝑛=0  and the nodes𝑟ℓ+1 = 𝑟ℓ + ℎ, ℓ = 0,1, … , 𝑚. 𝑟0 = 0 and  ℎ =

1

𝑚
. 

 Eq. (18) represents linear system of 𝑚 + 1 algebraic equations in the coefficients  𝑐𝑖  , by solving it using the conjugate 

gradient method. 

The exact solution of this example is  𝑧 𝑦 = 𝑦3 ([21], [22]). 
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Fig. 1.The behavior of the exact solution and the approximate solution at  𝑚 = 3. 

The behavior of the approximate solution using the proposed method with  𝑚 = 3 and the exact solution are presented in 

Figures, 1-4.  From this Figures 1-4, it is clear that the proposed method can be considered as an efficient method to solve 
the linear integral equations ([21], [22]). 

 

Example 2. Consider Eq. (1) with the following functions and coefficients ([21], [22]).  

𝑓 𝑦 = 2𝑦𝑒𝑦 − 𝑒𝑦 + 1,   𝜆1 = 1,      𝜆2 = −1, 

𝐾1 𝑦, 𝑟 = 0,    𝐾2 𝑦, 𝑟 =  𝑟 + 𝑦 ,    𝐹 𝑧 𝑟  = 0,     𝐺 𝑧 𝑟  = 𝑒𝑧 𝑟 .   

Eq. (1) takes following the form  

𝑧 𝑦 = 2𝑦𝑒𝑦 − 𝑒𝑦 + 1 −   𝑟 + 𝑦 𝑒𝑧 𝑟 𝑦

0
𝑑𝑟.                                                         (19) 

We apply the suggested method with 𝑚 = 3, and approximate the solution  𝑧 𝑦  as follows 

 

𝑧𝑚 𝑦 =  𝑐𝑛𝐻𝑛 𝑦 .3
𝑛=0                                                                                                       (20) 

 

By the same procedure in the previous section and using Eq. (13) we have  

 𝑐𝑛𝐻𝑛 𝑦 =

𝑚

𝑛=0

2𝑦𝑒𝑦 − 𝑒𝑦 + 1 −
ℎ

2
 𝛺2 𝑟0  + 𝛺2 𝑟𝑚    + 2  𝛺2 𝑟𝑘  

𝑚−1

𝑘=1

 , 

 𝑐𝑛𝐻𝑛 𝑦𝑝 −3
𝑛=0  2𝑦𝑝𝑒

𝑦𝑝 − 𝑒𝑦𝑝 + 1 +
ℎ

2
 𝛺2 𝑟0  + 𝛺2 𝑟3  + 2  𝛺2 𝑟𝑘  2

𝑘=1  = 0,

𝑝 = 0,1,2.
       (21) 

Where the nodes𝑟ℓ+1 = 𝑟ℓ + ℎ, ℓ = 0,1, … , 𝑚, 𝑟0 = 0and  ℎ𝑝 =
𝑦𝑝

𝑚
,  𝛺2 𝑟  𝑟 + 𝑦𝑝 𝑒

𝑧 𝑟 
. 

 Eq. (21) presents non-linear system of 𝑚 + 1 algebraic equations in the coefficients𝑐𝑖 . by solving it by using the Newton 

iteration method with suitable initial solution.  

The exact solution of this problem is  𝑧 𝑦 = 𝑦 ([21], [22]). 
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Fig. 2. The behavior of the exact solution and the approximate solution at 𝑚 = 3. 

 

Example 3. Consider Eq. (1) with the following functions and coefficients ([21], [22]).  

𝑓 𝑦 = 𝑦𝑒 + 1,   𝜆1 = −1,      𝜆2 = 1, 

𝐾1 𝑦, 𝑟 = 𝑟 + 𝑦,    𝐾2 𝑦, 𝑟 = 0,    𝐹 𝑧 𝑟  = 𝑒𝑧 𝑟 ,     𝐺 𝑧 𝑟  = 0.   

Eq. (1) takes following the form  

𝑧 𝑦 = 𝑦𝑒 + 1 −   𝑟 + 𝑦 𝑒𝑧 𝑟 1

0
𝑑𝑟.                                                                              (22) 

We apply the suggested method with 𝑚 = 3, and approximate the solution  𝑧 𝑦  as follows 

𝑧𝑚 𝑦 =  𝑐𝑛𝐻𝑛 𝑦 .3
𝑛=0                                                                                                     (23) 

By the same procedure in the previous section and using Eq. (13) we have  

 𝑐𝑛𝐻𝑛 𝑦 =

𝑚

𝑛=0

𝑦𝑒 + 1 −
ℎ

2
 𝛺1 𝑟0 + 𝛺1 𝑟𝑚 + 2  𝛺1 𝑟𝑘 

𝑚−1

𝑘=1

 , 

 𝑐𝑛𝐻𝑛 𝑦𝑝 −3
𝑛=0  𝑦𝑒 + 1 +

ℎ

2
 𝛺1 𝑟0 + 𝛺1 𝑟3 + 2  𝛺1 𝑟𝑘 

2
𝑘=1  = 0,

𝑝 = 0,1,2.
     (24) 

Where the nodes𝑟ℓ+1 = 𝑟ℓ + ℎ, ℓ = 0,1, … , 𝑚, 𝑟0 = 0and  ℎ =
1

𝑚
,  𝛺1 𝑟 =  𝑟 + 𝑦 𝑒𝑧 𝑟 

. 

 Eq. (24) presents non-linear system of algebraic equations by solving it using the well known Newton iteration method 
with suitable initial solution.  

The exact solution of this problem is  𝑧 𝑦 = 𝑦 ([21], [22]). 
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Fig. 3.The behavior of the exact solution and the approximate solution at   𝑚 = 3. 

 

Example 4. Consider Eq. (1) with the following functions and coefficients ([21], [22]).  

𝑓 𝑦 =
𝑦

2
−

𝑦4

12
−

1

3
,   𝜆1 = 1,      𝜆2 = −1, 

𝐾1 𝑦, 𝑟 = 𝑟 + 𝑦,    𝐾2 𝑦, 𝑟 = 𝑟 − 𝑦,    𝐹 𝑧 𝑟  = 𝑧 𝑟 ,     𝐺 𝑧 𝑟  = 𝑧2 𝑟 .   

Eq. (1) takes the following form  

𝑧 𝑦 =
𝑦

2
−

𝑦4

12
−

1

3
+   𝑟 + 𝑦 𝑧 𝑟 

1

0
𝑑𝑟 +   𝑟 − 𝑦 

𝑦

0
𝑧2 𝑟 𝑑𝑟.                              (25) 

We apply the suggested method with 𝑚 = 3, and approximate the solution 𝑧 𝑦  as follows 

𝑧𝑚 𝑦 =  𝑐𝑛𝐻𝑛 𝑦 .3
𝑛=0 (26) 

By the same procedure in the previous section and using Eq. (13) we have  

 𝑐𝑛𝐻𝑛 𝑦 =

𝑚

𝑛=0

𝑦

2
−

𝑦4

12
−

1

3
+

ℎ

2
 𝛺1 𝑟0 + 𝛺1 𝑟𝑚 + 2  𝛺1 𝑟𝑘 

𝑚−1

𝑘=1

 

−
ℎ

2
 𝛺2 𝑟0  + 𝛺2 𝑟𝑚    + 2  𝛺2 𝑟𝑘  

𝑚−1

𝑘=1

 , 

 𝑐𝑛𝐻𝑛 𝑦𝑝 −3
𝑛=0  

𝑦

2
−

𝑦4

12
−

1

3
 −

ℎ

2
 𝛺1 𝑟0 + 𝛺1 𝑟3 + 2  𝛺1 𝑟𝑘 

2
𝑘=1  

+
ℎ

2
 𝛺2 𝑟0  + 𝛺2 𝑟3  + 2  𝛺2 𝑟𝑘  2

𝑘=1  = 0, 𝑝 = 0,1,2.
(27) 

Where the nodes𝑟ℓ+1 = 𝑟ℓ + ℎ, 𝑟 ℓ+1 = 𝑟 ℓ + ℎ, ℓ = 0,1, … , 𝑚, 𝑟0 = 𝑟 0 = 0 and  ℎ =
1

𝑚
, ℎ𝑝 =

𝑦𝑝

𝑚
  and  𝛺1 𝑟 =

 𝑟 + 𝑦 𝑧 𝑟 , 𝛺2 𝑟 =  𝑦𝑝 − 𝑟 𝑧2 𝑟 . 

Eq. (27) presents non-linear system of  𝑚 + 1 algebraic equations by solving it using Newton iteration method. 

The exact solution of this problem is  𝑧 𝑦 = 𝑦 ([21], [22]). 
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Fig. 4. The behavior of the exact solution and the approximate solution at  𝑚 = 3. 

6. Conclusion 

In this articals, we approximate method for the solution of linear and non-linear Fredholm-Volterra integral equations using 
Hermite collocation method. A comparison of the exact solution reveals that the presented method is very effective and 

convenient. The numerical results show that the accuracy improves with increasing 𝑚, hence for better results, using 

number 𝑚 is recommended. Also, from the obtained approximate solution, we can conclude that the proposed method 

gives the solution in an excellent agreement with the exact solution. All computations are done using Maple programming. 
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