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ABSTRACT 

Mathematical models play important role in understanding the population dynamics of HIV/AIDS. In this study, a 
mathematical model is formulated for a community which has the structure of two classes with different levels of sexual 
activity – one is high activity group that include commercial sex workers and their male customers; and the other is low 
activity group. These two groups are further divided into two sub-groups as HIV infected and unaware, and HIV infected 
and aware after screening. It is assumed that people in low activity group when become aware, do not spread infection 
any more by means of either not participating in sexual activity at all or by taking some preventive measures. The model is 
analysed using stability theory of differential equations, numerical simulation and sensitivity analysis. 
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INTRODUCTION  

AIDS (Acquired Immune Deficiency Syndrome), caused by HIV (Human Immuno-deficiency Virus), has become one of the 
world’s most serious health and development challenges. Out of 340 lakh global AIDS cases,  48 lakh cases are in Asia 
and India has the highest (49%) number of people affected by this deadliest disease in the continent as revealed by 
UNAIDS report. 

Due to lack of knowledge about AIDS people have fear in their mind against the AIDS patients and due to fear of social 
boycott, people try to hide their disease status. 

After initial infection, the virus becomes less active in the body, although it is still present. During this period many people 
do not have any symptoms of HIV infection. This period is called latency phase. When person’s immune system is 
severely damaged by the virus and has difficulty in fighting diseases, then at this stage the person is said to have AIDS. 
Thus AIDS is the late stage of HIV infection. Before development of certain medications, people with HIV could progress 
to AIDS in just a few years. Currently people can live much longer – even decades – with HIV before they develop AIDS. 

In this paper, a mathematical model is proposed for predicting the epidemiological status of disease in long term and to 
find the right parameters to be worked upon for controlling the spread of the disease. 

Mathematical models have been used since decades for the better understanding of HIV/AIDS scenario and for applying 
control measures. From the very beginning in 1989, L. Johnson gave a note on basics of HIV/AIDS modelling [2]. J.M. 
Hymen used many models from simple to complex and addressed various risk factors [1]. A.S.R. Srinivasa Rao et al. 
presented a simple AIDS epidemic model and analysed it for India [3], in [4] he applied convolution to understand the 
prevalence. Y. Hsieh et al. highly structured the population into various classes on the basis of their activity type, gender 
etc. [6]. R. Naresh et al. divided the infected class into two parts on the basis of their activity levels [7]. N.J.D. Nagelkerke 
modelled the impact of various intervention methods and concluded that it is possible to have drug-resistant HIV after 
some years [8]. S.D. Hove-Musekwa et al. included screening while modelling [9]. For analysis we refer [10] - [14]. For 
data, we used [5], [7], and [15] - [19].  

History/Symptoms/Transmission of HIV/AIDS 

Scientists believe HIV came from a particular king of chimpanzee in Western Africa. Humans probably came in contact 
with HIV when they hunted and ate infected animals. 

Human Immunodeficiency Virus is lot like other viruses, including those that cause the common cold. But there is an 
important difference – over the time, our immune system can clear most viruses out of our body but not HIV. It belongs to 
an unusual group of viruses called retroviruses found in monkeys and apes, sheep and goats. 

There are two main strains of HIV i.e. HIV-1 and HIV-2. HIV-1 has caused the majority (80%) of infections and AIDS cases 
and HIV-2 is contracted in Africa and in some parts of India. 

Once the virus enters the body, it attacks CD4+ type of white blood cells (WBCs) in blood and gradually kills them. These 
cells help us to fight against various infections. Once they are destroyed, our body’s resistance goes down and the person 
suffers from lots of infections. 

Initially an HIV infected person looks completely normal and healthy. As early as 3 - months after exposure to HIV, people 
can experience an acute illness, often described as the “worst flu ever”. This is called Acute Retroviral Syndrome (ARS) or 
primary HIV infection, and it is the body’s natural response to HIV infection. During primary HIV infection, there are higher 
levels of virus circulating in the blood, which means the person can more easily transmit the virus to others. It is important 
to remember that not everyone gets ARS when they become infected with HIV. 

The general symptoms may include fever, rashes, night-sweats, diarrhea, mouth ulcers, sudden weight loss and other 
opportunistic illnesses. 

HIV do not survive outside the human body and therefore, can only be transmitted directly from person to person, either by 
sexual contact, exchange of blood or body fluids or from mother to child. 

HIV incidence and dynamics varies from country to country and from region to region, depending on various risk factors. 
Since this disease is driven mainly by sexual transmission, the level and intensity of risk behaviour are the main 
determinants of the spread of the virus. 

Mathematical Model 

Here, we divide the entire population N into six compartments. At time t, there are S susceptible or HIV negatives, Hn (Ln) 

HIV positive high (low) sexual activity group who are not aware that they are infected, Ha (La) HIV positive high (low) 

sexual activity group who are aware that they are infected, A is population with AIDS. The population dynamics among 

these compartments is shown in Fig.1: 
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Figure.1 Transfer diagram of HIV/AIDS 

 

The state variables and all the parameters are listed below: 

S: Number of susceptible (i.e. HIV negative) 

Hn (Ln): Number of unaware HIV positive persons with high (low) sexual activity 

Ha (La): Number of highly (less) active persons who are now aware that they are HIV positive 

A: Number of people who has developed AIDS 

B: Recruitment rate in susceptible class 

μ: Natural death rate 

δ: Disease induced death rate 

β1 (β2/β3): Probability of transmission of infection from an infective Hn (Ln/Ha) to a susceptible per contact per unit time 

c1 (c2/c3): Number of contacts made by a person from Hn (Ln/Ha) class 

σ1 (σ2): Rate of unaware infective Hn (Ln) to become aware by screening. 

α: Rate with which all type of infective develops AIDS. 

Here, we have assumed that when a person from Ln class moves to La class, it does not spread infection any more. So, 

the model takes the form as follows:  
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with 
n n a aN S H L H L A       

Adding all the above equations, we have  
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Let  , , , , ,n n a aE S H L H L A  be the equilibrium point of the system (1) of equation. Now, we calculate basic reproduction 

number, R0, as follows: 
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The derivatives 0D EF( )  and 0D EV( )  at disease free equilibrium point 0E , are partitioned as  
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Therefore, basic reproduction number 
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Stability of Disease Free Equilibrium 

T The disease free equilibrium is stable if all the eigen values of the Jacobian matrix of the system (1) have negative real 

parts. For this, the Jacobian of the system (1) at 0 ,0,0,0,0,0
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Here,  

trace (J) =  
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Now for det (J) to be > 0, we proceed as follows: 

Expanding det (J), we get 
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For det (J) > 0, after some algebraic simplification, we get the relation that  
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This implies that the disease free equilibrium is locally asymptotically stable if 
0 1R   otherwise unstable. 

Endemic  Equilibrium 

Let the endemic equilibrium point be    * * * * * *, , , , , 0,0,0,0,0,0e n n a aE S H L H L A   with  
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Local Stability of Endemic Equilibrium 

For this, the Jacobian of the system (1) at  * * * * * *, , , , ,e n n a aE S H L H L A  takes the form 
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where all the state variables are at endemic equilibrium point given by relations (3a) – (3g). 

Here,  
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Clearly, trace (JE) < 0. 

Now for det (JE) to be > 0, we proceed as follows: 

Expanding det (JE) and placing it to be greater than zero, we get 
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Substituting values of state variables at endemic equilibrium point and then after some algebraic simplifications we reach 
the relation 
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This implies that the endemic equilibrium point  * * * * * *, , , , ,e n n a aE S H L H L A is locally asymptotically stable if the relation (4) 

holds.  

Global Stability of Endemic Equilibrium 

Consider the Lyapunov function 
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Hence V is negative. Also note that 0V  if and only if * * * * * *,   ,   ,   ,      and   n n n n a a a aN N H H L L H H L L A A      . 

Therefore the largest compact invariant set in    , , , , , : 0n n a aS H L H L A V   is the singleton set eE , where 
eE is  

endemic equilibrium. Therefore, LaSalle’s invariant principle implies that 
eE  is globally asymptotically stable in Lyapunov 

sense. 

Sensitivity Analysis 

Now we evaluate the sensitivity indices of 
0R  to all the different parameters it depends on. These indices guide us to find 

the right parameter responsible for disease spread and need to be taken care of.  

We use following parameter values: β1 = β2 = β3 = 0.47, σ1 = σ2 = 0.015, μ = 0.02, δ = 1, α = 0.1,       c1= 3, c2 =0.4, c3 = 
0.6. Most of the values are taken from previous works done in Indian context. Others are derived on the basis of statistics 
released by some organisations. The analysis results are as follows: 

Table 1: Sensitivity Indices of R0 to the parameters for the HIV/AIDS model 

Parameter Sign Value 

β1 + 0.9756 

β3 + 0.0244 

c1 + 0.9756 

c3 + 0.0244 

Μ - 0.1522 

Α - 0.7611 

σ1 - -0.0867 

 

These results show that we need to target high activity group. The effective index of rate with which this spread infection 

turns out to be 1 1 0.9518c   . Also the rate of progression from infectious class to AIDS class is an important parameter 

having negative impact on disease spread as generally humans after developing AIDS rarely spread infection any more. 

Numerical Simulation 

Here, in order to find future trends of the disease we simulated the data with a population sample size of N = 23000. The 
results obtained are shown in Fig. 2. 
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Figure 2: Population Dynamics in Different compartments 

 

Figure 3: Population trend in High Activity Group –Not aware verses Aware 

 

Figure 4: Population trend in Low Activity Group –Not aware verses Aware 
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Figure 5: Population trend in Various Compartments in Next 50 years 

Result and Discussion 

In this study, we developed a mathematical model for HIV/AIDS in order to understand the population dynamics of the 
disease. We divided the infected class into four groups depending on their activity levels and screening status. For starting 
the qualitative analysis of the model, a relation for basic reproduction number R0 is established. Then the existence of 
steady states and their stabilities is analysed. The analysis shows that the disease free equilibrium is locally asymptotically 
stable if R0 < 1. For local stability of endemic equilibrium we established a relation that should hold. For global stability of 
it, we defined a Lyapunov function and established the result accordingly. Sensitivity analysis is done using data for India. 
The results of sensitivity analysis show that we need to target the high activity group (figures (2) – (5)). If we make them 
aware about the disease and educate them for using some safety measures then it may reduce the spread of disease. 
The results of numerical simulation confirm the results of sensitivity analysis. The graphs predict the future dynamics of 
disease prevalence and guide us that we need to control high activity group’s risky behaviour. 
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