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ABSTRACT 

What happens to the topological entanglement entropy of a system, when it is driven out of its ground state by increasing 
the temperature? This question is basic, especially if there is an increasing amount of temperature up to the interval of 
Planck time, in early universe cosmology. The author examines what is possible if a cyclic model is arranged via Penrose 
cyclic cosmology, which may enable entanglement entropy as a way to transfer essential information from a prior to the 
present universe. We reference Theorem 6.1.2 of the book by Ellis, Maartens, and MacCallum in order to argue that if 
there is a non zero initial scale factor, that there is a partial breakdown of the Fundamental Singularity theorem which is 
due to the Raychaudhuri equation. Afterwards, we review a construction of what could happen if we put in what Ellis, 
Maartens, and MacCallum call the measured effective cosmological constant and substitute  

Effective in the Friedman 

equation. I.e. there are two ways to look at the problem, i.e. after
Effective , set 

Vac  as equal to zero, and have the left 

over   as scaled to background cosmological temperature, as was postulated by Park (2002) or else have 
Vac as 

proportional to 38 2~10Vac GeV which then would imply using what we call a 5 dimensional contribution to     as 

proportional to 
5 ~ const/ TD

    . We find that both these models do not work for generating an initial singularity.   

removal as a non zero cosmological constant is most easily dealt with by a Bianchi I universe version of the generalized 
Friedman equation.  
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1. Introduction 

What happens to the topological entanglement entropy of a system, when it is driven out of its ground state by increasing 
the temperature? We ask this question because if the universe started as an initially cold universe, we have an initial 
cosmological ”constant” which if it varies by temperature, could be initially set equal to zero, and which rises in value 

dramatically with increasing temperature. I.e. from a cold to a “hot” universe of up to 19 3210 10GeV Kelvin . The dramatic 

increase in temperature from essentially zero to 
19 3210 10GeV Kelvin  would be in tandem with conditions in which 

Theorem 6.1.2 of Ellis, Maartens, and Mac Callum [1] would be when the initial conditions of the cosmos changed, no 

longer held. Note that we are assuming a temperature dependent cosmological „constant‟ parameter,  , which we could 
write as given by Park, et. Al. [2]  

      
start valueT



             (1) 

If  Eq. (1) were about zero for an ultra low temperature, we would approach having Theorem 6.1.2 of Ellis, Maartens, and 
Mac Callum [1]with the cosmological parameter less than or equal to zero. This is different from having a very low, 

constant 
start value and  equal to zero, which would correspond to a uniform unchanging cosmological constant, never 

zero which would be with regards to the present era, very tiny and almost zero, although sufficient to initiate a deviation 
from Theorem 6.1.2. The present document is to determine what may contribute to a nonzero initial radius, i.e. not just an 
initial nonzero energy value, as Kauffman‟s paper would imply, and how different models of contributing vacuum energy, 
initially may affect divergence from the first singularity theorem. The choices of what can be used for an effective 
cosmological constant will affect if we have a four dimensional universe in terms of effective contributions to vacuum 
energy, or if we have a five dimensional universe. The second choice will probably necessitate a tie in with Kaluza Klein 
geometries, leaving open possible string theory cosmology. In order to be self contained, this paper will give partial re 
productions of Beckwith‟s[3] paper, but the 2

nd
 half of this document will be completely different, ie. When considering an 

effective cosmological constant.  With four different cases. The last case is unphysical, even if it has, via rescaling zero 
effective cosmological constant, due to an effective „fluid mass‟ 

effM    

2. Looking at the First Singularity theorem and how it could fail 

Again, we restate at what is given by Ellis, Maartens, and MacCallum.[1] (2012) as to how to state the 
fundamental singularity theorem 

Theorem 6.1.2 (Irrotational Geodestic singularities) If 0  ,  3 0p   , and 0p    in a fluid flow for 

which 0u  , 0   and 0 0H   at some time 0s , then a spacetime singularity , where either   0   or 

  , occurs at a finite proper time 0 0H  before 0s . 

As was brought up by Beckwith, [2](2013), if there is a non zero initial energy for the universe, a supposition which is 
counter to ADM theory as seen in Kolb and Turner [4] , then the supposition by Kauffman [5]  is supportable with evidence. 
I.e. then if there is a non zero initial energy, is this in any way counter to Theorem 6.1 above? We will review this question, 

keeping in mind that.   0   is in reference to a scale factor, as written by Ellis, Maartens, and MacCallum [1]. 

(2012), vanishing.  

3. Looking at how to form   0   for all scale factors. 

What was done by Beckwith [2](2013) involved locking in the value of Planck‟s constant initially. Doing that locking in of an 
initial Planck‟s constant  would be commensurate with some power of the mass within the Hubble parameter, namely 

0M ,  

                           
0M                                                                                                                                 (2) 

We would argue that a given amount of mass, 
0M would be fixed in by initial conditions, at the start of the universe and 

that if energy, is equal to mass ( E = M) that in fact locking in a value of initial energy, according to the dimensional 
argument of ~E   that having a fixed initial energy of ~E  , with Planck‟s constant fixed would be commensurate 

with, for very high frequencies,   of having a non zero initial energy, thereby confirming in part Kauffmann( 2012) , as 

discussed in Appendix A, for conditions for a non zero lower bound to the cosmological initial radius. If so then we always 

have   0   . We will then next examine the consequences of   0  . I.e. what if   ( )a   for a FLRW cosmology?  

4.   0   and what to look for in terms of the Raychaudhuri-Elders equation for  

  ( )a   at the start of cosmological expansion in FLRW cosmology 

We will start off with   ( ) H

initiala a e   


 with H an initial huge Hubble parameter 
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  2 2 23 / 4 3 8 0a a G p a G a a const                                                                                (3) 

Equation (2) above becomes, with   ( ) H

initiala a e   


 introduced will lead to 

   2 2 2/ 8 / 8initial initiala const H G a const H G               
                                          (4) 

5. Analyzing Eq. (4) for different candidate values of  , with 
Effective  for three cases. 

The equation to look at if we have 
Effective put into Eq. (3) is to go to, instead to looking at 

Effective Vac                                                                                                                                       (5) 

Case 1, set 0Vac  , and 
start valueT



    such that in the present era with T about 2.7 today 

83 2~10Effective Vac GeV    (today)                                                                                                            (6) 

This would change to , if the temperature T were about 32 1910 ~10Kelvin GeV  

38 2~10Effective Vac GeV    ( Plank era)                                                                                                        (7) 

The upshot, is that if we have Case 1, we will not have a singularity if we use Theorem 6.1 

Case 2, set 0Vac  , and  such that
start value    in the present era with T about 2.7 today 

The upshot, is that if we have Case 2, we will not have a singularity if we use Theorem 6.1 

Unless  
start value   is less than or equal to zero. In reality this does not happen, and we have 

83 2~10Effective Vac GeV    (always)                                                                                                         (8) 

Case 3, set 38 2~10Vac GeV , and set 
5 ~ const/ TD


     for all eras. Such that 

38 2 83 2

5~10 ~ const/ T ~10 ( )Effective Vac DGeV GeV today
           

                                                 (9) 

38 2 38 2

5~10 ~ const/ T ~10 (Planck era)Effective Vac DGeV GeV
           

                             (10) 

The only way to have any fidelity as to this theorem 6.1 would be to eliminate the cosmological constant entirely. There is, 
one model where we can, in a sense “remove” a cosmological constant, as given by  Ellis, Maartens, and MacCallum.[1] , 
and that is the Bianchi I universe model, as given on page 459 [1]. 

6. Bianchi I universe in the case of 1p const        

In this case, we have pressure as the negative quantity of density, and this will be enough to justify writing 

 
2 2 2

2 6 3 3 6

1

3
M

M








 
     



   
                                                                           (11) 

If   H

initiale
 


  , we can re write Eq.(11) as, if the sheer term in fluid flow, namely  is a non zero constant term.( I.e. at 

the onset of inflation, this is dubious)  

 6 2 23H M     
                                                                                                 (12) 

In this situation, we are speaking of a cosmological constant and we will collect   effM M  such that 

6 2 23 effH M    
                                                                                                   (13) 

If we speak of a fluid approximation, this will lead to for Planck times looking at ~ initial   so we solve 

1/6
1/3 23 effH M    

                                                                                                                                (14) 
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The above equation no longer has an effective cosmological constant, i.e. if matter is the same as energy, in early 

inflation, Eq. (14) is a requirement that we have, effectively, for a finite but very large 2H  

2 3effH M                                                                                                                  (15) 

7. Use of Thermal history of Hubble parameter  equation  represented by Eq.(15) 

Ellis, Maartens, and MacCallum. (2012) treatment of the thermal history will then be, if  100 1000g T   

 
4

2 2

2
(1.7)

p

T
H g T

M
                                                                                                                 (16)       

Then we have for Eq. (15),if the value of Eq.(16) is very large due to Plank temperature values initially 

  
4

2

2
(1.7) 3eff

p

T
g T M

M
                                                                                                                      (17) 

This assumes that there is an effective mass which is equal to adding both the Mass and a cosmological constant 
together. In a fluid model of the early universe. This is of course highly unphysical. But it would lead to Eq. (14) having a 
non zero but almost infinitesimally small Eq. (14) value. The vanishing of a cosmological constant inside an effective (fluid) 

mass, as given above by   effM M  means that if we treat Eq. (16) above as ALMOST infinite in value, that we 

ALMOST can satisfy Theorem 6.1 as written above. The fact that  100 1000g T  [6]  , i.e. we do not have infinite 

degrees of freedom, means that we get out of having Eq. (16) become infinite, but it comes very close.  

8. Use of Thermal history of Hubble parameter equation represented by Eq.(3) and an 
effective cosmological parameter. 

Case 1,  if  0Vac  .  But the cosmological parameter has a temperature dependence. Is the following true when the 

temperatures get enormous? 

 
4

2

2
(1.7) 8 initial start Value

p

T
g T G T

M

                                                                                                    (18) 

Not necessarily,. It could break down.  

Case 2, set 0Vac  , and  such that
start value   (cosmological constant). Then we have 

 
4

2

2
(1.7) 8 initial start Value

p

T
g T G

M
                                                                                 (19) 

Yes, but we have problems because the cosmological parameter, while still very small is not zero or negative. So theorem 

6.1.2 above will not hold. But it can come close if the initial value of the cosmological constant is almost zero. 

Case 3, when we can no longer use 0Vac  . Is the following true ? When the Temperature is Planck temp? 

 
4

2

2
(1.7)

p

T
g T

M
  >> 38 2 38 2

5~10 ~ const/ T ~10 (Planck era)Effective Vac DGeV GeV
           

          (20) 

Almost certainly not true.  Our section eight is far from optimal in terms of fidelity to Theorem 6.1. 

 We are close to Theorem 6.1.2 on our section seven. But this requires a demonstration of the constant value of 
the following term, in section 7 , namely in the Bianchi universe model, that the  sheer term in fluid flow, namely  is a 
non-zero constant term.( I.e. at the onset of inflation, this is dubious). If it,  ,  is not zero, then even close to Planck time, 
it is not likely we can make the assertion mentioned above. In Section 7.           

 9. Conclusion:Non singular solutions to cosmological evolution require new 
thinking. No initial singularity. 

For section 7 above we have almost an initial singularity, if we replace a cosmological constant with   effM M  , And 

we also are assuming then, a  thermal expression for the Hubble parameter given by Ellis, Maartens and Mac Callum [1] 

as a  
4

2

2
(1.7)

p

T
g T

M
  term which is almost  infinite in initial value.  Our conclusion is that we almost satisfy Theorem 6.1 if 
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we assume an initially almost perfect fluid model  to get results near fidelity with the initial singularity theorem (Theorem 
6.1). This is dubious in that it is unlikely that   , as a shear term  is not zero, but constant over time, even initially. The 
situation when we look at effective cosmological “constants” is even worse. I.e. Case 1 to Case 3 in section eight nowhere 
come even close to what we would want for satisfying the initial singularity theorem (theorem 6.1).We as a result of these 
results will in future work examine applying Penrose‟s CCC cosmology [7] to get about problems we run into due to the 
singularity theorem cosmology as represented by Theorem 6.1 above. 

Appendix A: Indirect support for a massive graviton 

We follow the recent work of Steven Kenneth Kauffmann [5], which sets an upper bound to concentrations of energy, in 
terms of how he formulated the following equation put in below as Eq. (A1). Eq. (A1) specifies  an inter-relationship 
between an initial radius R  for an expanding universe, and a “gravitationally based energy” expression we will call 

 GT r which lead to a lower bound to the radius of the universe at the start of the Universe‟s initial expansion, with 

manipulations. The term  GT r is defined via Eq.(A2) afterwards.  We start off with Kauffmann‟s[5] 

 
4

3

G

r R

c
R T r r d r

G  

 
    

 
                                         (A1) 

Kauffmann calls 
4c

G

 
 
 

 a “Planck force” which is relevant due to the fact we will employ Eq. (A1) at the initial instant of the 

universe, in the Planckian regime of space-time. Also, we make full use of setting for small r, the following: 

    2

0 ~ ( ) ~G G Graviton Initial entropyT r r T r const V r m n c 
                                         (A2) 

I.e. what we are doing is to make the expression in the integrand proportional to information leaked by a past universe into 
our present universe, with Ng style quantum infinite statistics use of  

~Initial entropy Graviton count entropyn S  
                                       (A3) 

Then Eq. (A1) will lead to  

 
4

3

4

1
4

~

~

G Graviton Initial entropy Graviton count entropy

r R

Graviton Initial entropy Graviton count entropy

Graviton Init

c
R T r r d r const m n S

G

c
R const m n S

G

c
R const m n

G

  

 

  



 
           

 

 
        

 

 
     

 



~ial entropy Graviton count entropyS  
    

                                    (A4) 

Here, 
5~ ~ 10Initial entropy Graviton count entropyn S  

   , 
62~ 10Gravitonm grams

, and we set Plank length as: 

Planck length = Planckl  = 1.616199 × 10
-35

 meters 

where we set 
3Planck

G
l

c


   with ~ 10PlanckR l  , and 0  .  Typically ~ 10PlanckR l  is about 310 Planckl  at the outset, 

when the universe is the most compact.  The value of const is chosen based on common assumptions about contributions 
from all sources of early universe entropy, and will be more rigorously defined in a later paper. 
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