
 

I S S N  2 3 4 7 - 1 9 2 1  

 V o l u m e  1 3  N u m b e r  5  

                     J o u r n a l  o f  A d v a n c e  i n  M a t h e m a t i c s   

7403 | Page                                                                                                                              https://cirworld.com 

December 2017 
 

Improved Newton-Raphson methods for Solving Nonlinear Equations 

Liang Fang1,*, Lin Pang2 
1
 College of Mathematics and Statistics, Taishan University, 271021, Tai'an, China 

* fangliang3@163.com 
2
 The circulation department of Library, Taishan University, 271021, Tai'an, China 

panglin_lin@163.com 
ABSTRACT 

In this paper, we mainly study the numerical algorithms for simple root of nonlinear equations based on Newton-Raphson 
method. Two modified Newton-Raphson methods for solving nonlinear equations are suggested. Both of the methods are 
free from second derivatives. Numerical examples are made to show the performance of the presented methods, and to 
compare with other ones. The numerical results illustrate that the proposed methods are more efficient and performs 
better than Newton-Raphson method. 
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Introduction 

Nonlinear problems is an important direction of research in the field of numerical calculation. Solving nonlinear equations 
is a classical problem which has interesting applications in various branches of science and engineering, and the problem 
of solving nonlinear equations by numerical methods has gained more importance than before.  

To solve nonlinear equations, we can use iterative methods such as Newton's method (NM), Newton-Raphson 
method (NRM) or their variants.  

In this paper, to improve the convergence properties, we consider iterative method to find a simple root *x  of a 

nonlinear equation ( ) 0f x  , where  :f R R   for an open interval    is a scalar function and it is sufficiently 

differentiable in a neighborhood of *x . 

It is well known that Newton-Raphson method is a basic and important method for solving nonlinear equation [1] using 
the iterative expression 
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which is quadratically convergent in the neighborhood of  *x .  

To improve the convergence properties, many variants of Newton-Raphson method has been proposed in the last 
years. In [2], Potra and Pták presented the following iterative method (PPM) 
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which is cubically convergent. In [3], Changbum Chun presented the following iterative scheme (CM)  
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which is fourth-order convergent. 
In recent years, much attention has been given to develop iterative methods for solving nonlinear equations and a 

vast literature has been produced [3-10].  
Motivated and inspired by the on going activities in this direction, the aim of this paper is to construct new efficient 

iterative methods to solve nonlinear equations. Based on Newton-Raphson method, we present two improved Newton-
Raphson methods, and the convergence of the new scheme is proved. The proposed methods do require the computation 
of only first-order derivatives unlike other methods requiring the computation of second or higher derivatives. The order of 
convergence of the proposed algorithms is established. Several examples are presented and compared to other methods, 
showing the accuracy and fast convergence of the new algorithms. 

The Improved Newton-Raphson Methods And Their Convergence 

Let us consider the following iterative method. 

Algorithm 1. For given 0x , we consider the following iteration scheme 
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Now, we are in the position to give the convergence of Algorithm 1. 

Theorem 1. Assume that the function  :f R R   has a single root *x  , where   is an open interval. If 

( )f x  has first, second and third derivatives in  , then Algorithm 1 is sixth-order convergent in a neighborhood of *x  

and it satisfies error equation 
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Proof.  Let *x   be the simple root of ( )f x ,  
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    and *n ne x x  .  

Consider the iteration function ( )F x  defined by 

                   
2 2

2

3 ' ( ) ' ( ( )) ( ( ))
( ) ( )

'( )2 '( ) '( ( )) 2 ' ( ( ))

f x f y x f w x
F x w x

f xf x f y x f y x


 


                                                   (9) 

where  
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By some computations using Maple we can obtain 
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Furthermore, from the Taylor expansion of ( )nF x  around *x , we have 
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Substituting (11) into (12) yields  

5 6 7
1 1 2* * 5 ( ).n n n nx x e x c e O e        

Therefore, we have 
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which shows that the algorithm 1 is sixth-order convergent.  

Now, we give the other further improved Newton-Raphson method.  

Algorithm 2. For given 0x , we consider the following iteration scheme 
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Next, we consider the convergence of Algorithm 2. 

Theorem 2. Assume that the function  :f R R   has a single root *x  , where   is an open interval. If 

( )f x  has first, second and third derivatives in  , then Algorithm 2 is seventh-order convergent in a neighborhood of 

*x  and it satisfies error equation 
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Proof.  Let *x   be the simple root of ( )f x ,  
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Consider the iteration function ( )F x  defined by 
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where  
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Furthermore, from the Taylor expansion of ( )nF x  around *x , we have 
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Substituting (18) into (19) yields  
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Therefore, we have 
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which shows that the algorithm 2 is seventh-order convergent.  

Numerical Results 

Now, we employ Algorithm 1 and Algorithm 2 presented in this paper to solve some nonlinear equations and compare 

them with NRM and PPM. Displayed in Table 1 are the number of iterations (ITs) required such that  | ( ) | 1. 14.nf x E   

Table 1. Comparison of Algorithm 1, Algorithm 2, NRM PPM and CM 

Functions 0x
 

NRM PPM CM Algorithm 1 Algorithm 2 

1f  2.4 7 4 3 3 3 

 
1.6 6 12 5 4 4 

2f  0.6 4 3 3 3 2 

 
3.1 7 3 3 2 3 

3f  1.4 6 4 3 3 3 

 
2.1 5 4 4 3 3 

4f  
3.8 16 12 8 7 6 

 
3.3 10 7 7 6 6 

5f  7.7 13 9 6 5 4 

 -0.8 6 5 4 4 3 

In table 1, we use the following functions. 

3
1( ) ( 1) 1, * 2.f x x x     

2( ) cos , 0.73908513321516.f x x x     

2 2 *
3( ) sin ( ) 1, 1.40449164885154.f x x x x     

2 7 30
4( ) 1, * 3.x xf x e x     
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*
5( ) ( 2) 1, 0.44285440096708.xf x x e x      

The computational results in Table 1 show that Algorithm 1 and Algorithm 2 require less ITs than NRM and PPM. 
Therefore, the present algorithms are of practical interest and can compete with NRM, PPM, CM and some existing 
algorithms. 

Conclusions 

With the wide development of science and technology, the problem of solving nonlinear equations by numerical methods 
has gained more importance than before. In order to obtain efficient algorithm for the nonlinear equations which come 
from the practical problems, in this paper, we present and analyze two improved Newton-Raphson methods for solving 
nonlinear equations. The methods are free from second derivatives. Several numerical results illustrate the convergence 
behavior and computational efficiency of the proposed methods. Computational results demonstrate that they are more 
efficient and perform better than Newton-Raphson method and some existing methods. 
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