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ABSTRACT: 

Our interest in the present work is in implementing the FPSM to stress it power in handing the nonlinear fractional coupled 

Hirota-Satsuma-KdV Equation. The approximate analytical solution of this type equations are obtained. 
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INTRODUCTION  

During this last decades the nonlinear fractional differential equation have been applied in various scientific and 

engineering fields, such as electromagnetic theory, fluid mechanics, biology, solid state physics, chemical physics and 

geochemistry etc[1-16]. In most cases, it is very difficult to obtain exact solutions. So these types of equations must be 

solved by any numerical methods or approximate methods. Many approaches for the solution of fractional differential 

equations have been proposed. These methods include the direct algebraic method [4-5], Jacobi elliptic function method [6], 

tanh-function method [7], variational iteration method and homotopy perturbation method [8,9], Adomian decomposition 

method [11], sine–cosine method [12], homotopy analysis method [13], the differential transform method [14], and fractional 

power series method(FPSM)[15]. 

The FPSM is a powerful tool for solving linear and nonlinear problems. Our interest in the present work is in implementing 

the FPSM to stress it power in handing the following nonlinear fractional coupled Hirota-Satsuma-KdV Equation: 
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subject to the conditions 

,tanh)0,(,tanh)0,( 2 xxvxxu                                    (3) 

where )01( D  denote the Caputo fractional derivative of order .  

The Eqs.(1) and (2) arise in many scientific applications such as quantum mechanics and plasma physics [1-3]. It is well 

known that wave phenomena of plasma are modeled by kind tanh solution. 

The present paper has been organized as follows. In section 2, we introduce the basic definitions and properties of 

fractional calculus and the FPSM is described. In section 3 the FPSM is applied for the EqS.(1) and (2). Conclusion is 
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presented in Section 4. 

BASIC DEFINITIONS  

In this section, we will introduce notations, definitions and some useful lemmas, which play an important role in obtaining 

the main results of this paper. We begin with some basic definitions [15]. 

Definition 1. A real function ( ), 0f x x   is said to be in the space ,C R   if there exists a real number 

p  , such that 
1( ) ( )pf x x f x  where 1( ) [0, )f x C   and it is said to be in the space nC  if and only 

if 
( ) , .nf C n N   

The Riemann-Liouville fractional integral operator is defined as follows: 

Definition 2. The Riemann-Liouville fractional integral operator of order 0   of a function ( ) , 1f x C     

is defined as: 
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  Properties of the operator J 
 can be found in and we mention only the following: For , 0, 0x     and 1:    
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 Definition 3. The fractional derivative of ( )f x  in Caputo sense is defined as:                                                                                              
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for 1 , , 0m m m N x       and 1

mf C . 

We recall here two of its basic properties : 

                         ( ) ( ),D J f x f x    
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Definition 4.  A  power series representation of the form  
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where 0 1 ,m m m N       and 0t t  is called a fractional power series (FPS) about 0t , where t  is a 

variable and nc  are the coeffients of the series.  

We also need the following property: 

Lemma 1. Suppose that the FPS 
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THE SOLUTIONS OF Eqs. (1) AND (2) 

To solve the Eqs. (1) and (2) by FPSM, suppose that the solution of (1) and (2) takes the form: 
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   Using (3), we have  

                         .tanh)(,tanh)( 0
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0 xxbxxa            .   

   Next we determine the ( ) , ( ) ( 1,2, ).k ka x b x k    

   From Lemma 1,  we obtain 
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   Substituting (6) and (7) into (4), and comparing the coefficients of t  in the both side, we get 

,
)1)(1(

)1()(8
)(

32

22

1 x

xx

e

ee
xa










 

,
)1)(1(

)(4
)(

22

2

1 x

x

e

e
xb









 

,
)1)(12(

)41)(1(16
)(

42

422

2 x

xxx

e

eee
xa










 

,
)1)(12(

)21)(1(8
)(

32

22

2 x

xx

e

ee
xb










 

,
)1)(13(

)101)(1)(12(16
)(

52

4222

3 x

xxxx

e

eeee
xa










 

,
)1)(13(

)41)(12(8
)(

42

422

3 x

xxx

e

eee
xb










 

,
)1)(14(3

)2666261)(13(32
)(

62

86422

4 x

xxxxx

e

eeeee
xa










 

,
)1)(14(3

)11111)(13(16
)(

52

6422

4 x

xxxx

e

eeee
xb










 

and so on. 

Thus we obtain the solution
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    The exact solution to the problem (1)-(3)  when 1   are given as: 

                             
2( , ) tanh ( ),u x t x t    

                             ).tanh(),( txtxv   

CONCLUSION 

The FPSM is a powerful tool for solving the nonlinear fractional coupled Hirota-Satsuma-KdV Equation. Our results show 

that the FPSM is simple, direct and effective.  
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