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Abstract 

A new one-point k-order iterative method for finding zeros of nonlinear equations having unknown multiplicity is 
introduced.  In terms of computational cost the new iterative method requires k+1 evaluations of functions per 
iteration.  It is shown that the new iterative method has a convergence of order k.  
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1 Introduction 

We propose a new one-point k-order iterative method to find multiple roots of the nonlinear equation. The root-
solver is of great practical importance since it overcomes theoretical limits of iterative methods concerning 
convergence order and computational efficiency.  In this paper, we are interested in the case that   is a root of 

multiplicity 1m   of a nonlinear equation.  Therefore, the purpose of this study is to develop a new class of 

iterative method for finding multiple roots of nonlinear equations of a higher order than the existing iterative 
methods [2,5-8] and show further development of the Thukral third and fourth order methods [6-8]. 

2 Preliminaries 

In order to establish the order of convergence of the new k-order iterative method, we use the following definitions 

[2,5-8]. 

Definition 1  Let  f x  be a real-valued function with a root   and let  nx  be a sequence of real 

numbers that converge towards .   The order of convergence p is given by 
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where p   and   is the asymptotic error constant [1-9]. 

Definition 2 Let k ke x    be the error in the kth iteration, then the relation 
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is the error equation. If the error equation exists, then p is the order of convergence of the iterative method [1-9].   

Definition 3 Let r be the number of function evaluations of the method.  The efficiency of the method is 

measured by the concept of efficiency index and defined as 

  , ,rEI r p p             (3) 

where p is the order of convergence of the method [3]. 

Definition 4 Suppose that 1,n nx x  and 1nx    are three successive iterations closer to the root      of (1).  

Then the computational order of convergence may be approximated by  
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where     ,i i if x f x    [6-8].   
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3 Construction of the new k-order iterative method 

In this section we present a new scheme to find multiple roots of a nonlinear equation.  Our aim is to define a new 
one-point iterative method of k-order of convergence and in process we shall demonstrate that three established 
methods are formed namely, the classical Schroder method, the Thukral third-order method [6], and the Thukral 
fourth-order method [8].  

First we denote the following 
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The Method 

In general, we define a new scheme as 
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where 
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 , , , .n k p q              (17) 

When 1,k   without loss of generality, we consider the classical Newton method as our first scheme and in fact 

it has first-order convergence given by 
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When 2,k   the classical Schroder second-order method [4] is obtained and is given as 
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Next 3,k   the Thukral third-order method is obtained [6] and is given as,  
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And next when 4,k    we obtain the Thukral fourth-order method [8], given by 
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where 
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1 2 36, 9, 3,               (34) 

1 2 3 4 56, 12, 4, 1, 3,                 (35) 

Also, it was shown that the fourth-order method (32) can also be expressed as 
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When 5,k   we progress to define a fifth-order iterative method for finding multiple roots of a nonlinear 

equation.  In order to construct the new iterative method we require a total of five function evaluations. Hence the 
new scheme is given as 
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where 
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Also, the new fifth-order method (39) can also be expressed as 
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It is essential to analyse the order of convergence of the new iterative method. 

Theorem 1  

Let :f I    be a function for an open interval .I    Let  nf x   has a multiple root, x I    with 

multiplicity 1m   and 0x  is the initial guess of the multiple root.  Assume that  nf x is a sufficiently 

differentiable function in I, then iteration defined by the new scheme (39) has fifth-order convergence and satisfies 
the error equation 
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Proof  

Let    be a root of multiplicity m, that is        1
0,

m
f f f  

    and 
    0.
m

f    Since 

 nf x  is a sufficiently differentiable function, therefore we expand  f   about x   by the Taylor series. 

Also let n ne x    and using the Taylor series expansion of 
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From (47)-(52), we get 
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Substituting appropriate expressions in (39) and simplifying, we have 
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The expression (60) establishes the asymptotic error constant for the fifth-order of convergence for the new 
iterative method defined by (39).  This completes the proof.           

The new one-point k-order method requires (k+1) function evaluations and has the order of convergence k.  To 
determine the efficiency index of the new method, definition 3 shall be used. Hence, the efficiency index of the 
new iterative method given by (7) 

 
 1

1, .
k

EI k k k


           (62) 

4 Application of the new one-point k-order iterative method 

The proposed one-point k-order method given by (7) is employed to solve nonlinear equation with multiple roots. 

The difference between the multiple root 
 
and the approximation nx  for test function with initial guess 0x is 

displayed in table. Furthermore, the computational order of convergence approximations are displayed in table 
and we observe that this perfectly coincides with the theoretical result.  In addition, the difference between the 

multiplicity m  and the approximation m


 is also displayed in table. The numerical computations listed in the table 

was performed on an algebraic system called Maple and the errors displayed is of absolute value. 

We will demonstrate the convergence of the new one-point k-order method for the following nonlinear equation 

  
6

2xf x e x     ,        (63) 

having multiplicity 6m   and the exact value of the multiple roots of (63) is 0.442854 .    In Table 1 the 

errors obtained by the new method described, is based on the initial value
2

0 2x  . We observe that the new 

one-point k-order method is converging to the expected order.  

Table 1 Errors occurring in the estimates of the root of (63) by the method described 

method 
1x   2x   3x   4x   ˆ

km m  COC  

(18) 

(23) 

(28) 

(32) 

(39) 

0.159 

0.983e-2 

0.740e-3 

0.181e-4 

0.411e-6 

0.131 

0.292e-4 

0.446e-10 

0.124e-20 

0.255e-34 

0.108 

0.260e-9 

0.979e-32 

0.279e-85 

0.231e-175 

0.090 

0.206e-19 

0.103e-96 

0.702e-344 

0.143e-880 

- 

0.950e-9 

0.179e-31 

0.509e-85 

0.422e-175 

0.9928 

2.0000 

3.0000 

4.0000 

4.9996 

 

5 Remarks and conclusion 

A new one-point k-order iterative method for solving nonlinear equations with multiple roots has been introduced.  
Empirically, we have found that the new k-order iterative method contains product of k function and (k+1) function 

evaluations. We observe that the computational order of convergence approximations perfectly coincides with the 
theoretical result. The drawback of the proposed method is that we need to evaluate higher order derivatives of a 
given function, hence further improvement is necessary.  Finally, we conjecture that the new scheme (7) can be 
constructed to produce any higher order of convergence.  
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