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ABSTRACT 

We prove an existence and uniqueness of regular solution to the Einstein-Maxwell-Boltzmann-Scalar Field system with 
pseudo-tensor of pressure and the cosmological constant globaly in time. We clarify the choice of the function spaces and 
we establish step by step all the essential energy estimations leading to the global existence theorem. 
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1. INTRODUCTION 

The basic equation of general relativity are the Einstein equation coupled to some other partial differential equation 
describing the matter content of space-time. There are many choices of matter model which are of physical interest. Solving 
the Einstein equations means determining both the gravitational field, subjet to the Einstein equation, and its sources, subjet 
to other type of equations. If we consider the case of charged particles, we must take into account the Maxwell equation 
which are the basic equation of Electromagnetism and determine the electromagnetic field F created by the fast-moving 
charged particles in the system. We are interested in this work in global dynamics of magnetized relativistic kinetic matter 
with cosmological constant in the presence of a massive scalar field and pseudo-tensor of pressure on a Bianchi type I 
space-time with a locally rotationnal symmetric (L.R.S). We consider the case where the electromagnetic field F is 

generated, through the Maxwell equation by the Maxwell current defined by the distribution function f  of the colliding 

particles, a charge density e , and a future pointing unit vector u , tangent at any point to the temporal axis. The particles 

are statistically desccribed in terms of their distribution function, denoted by ,f which is a non-negative real valued 

function of both the position and the momentum of particles and which is subject to the Boltzmann equation. 

We then consider the Einstein-Maxwell-Boltzmann system with the cosmological constant and pseudo-tensor of pressure in 
the presence of a massive scalar field. The source term of the Einstein equation then takes the form 

 ,8 21

  HTT   where ( )1

T  is the energy-momentum tensor associated to ;f ( )  is the Maxwell 

tensor associated to the electromagnetic F; ( )2

T  is the tensor associated to a massive scalar field   and ( )H  is the 

pseudo-tensor of the pressure. 

Many authors obtained a global existence theorem of the Einstein equation coupled to various kind of equations. N. 

Noutchegueme and D. Dongo obtained in  1  a global existence theorem of the Einstein-Boltzmann system in the Bianchi 

type I space-time, but the solution was not regular; N. Noutchegueme and R. Ayissi in  5  have obtained the same 

non-regular solution; N. Noutchegueme and R. Ayissi in  6  the Einstein-Maxwell-Boltzmann equation with the 

cosmological constant; but they did not take account of the scalar field and the pseudo-tensor of pressure. The originality of 
the present work is based on the fact that we consider the whole system that will be certainly of a great interest in order to 
model some natural phenomena and to confirm the actual observation concerning our universe. 

The paper is organized as follows. In section 2, we introduce our system on a Bianchi type I space-time; in section 3, we 
present the functional space and the principal result of the regular Boltzmann equation. In section 4, we study the Einstein 
equation; in section 5, we prove a local in time existence theorem for our coupled system; in section 6, we prove that the 
solution obtained in section 5 in global. 

2. EQUATIONS AND PRELIMINARY RESULTS 

 Unless otherwise specifed, Greek indices, ,...,,,   range from 0 to 3 and Latin indices, ,...,,, kji from 1 to 3. We 

adopt the Einstein summation convention  
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We consider the collisional evolution of a kind of fast moving massive and charged particules in the time-oriented Bianchi 
type I space-time with L.R.S, the metric then takes the form 

 ),)(()(= 222222 dzdytbdxtadtg   (1) 

Where the metric potentials 0>0,> ba  are two continuously differentiable unknown functions of time t  alone and 

subjet to the Einstein equations. 

  The system reads 

    HTTgRgR  218=
2

1
 (2) 

 


 JF 4=  (3) 

 0= FFF   (4) 

 ),(= ffQfLX  (5) 

Where: (2) is the Einstein system for the unknown metric tensor  ;= gg  R  is the Ricci tensor, contracted of the 

curvature tensor, 
RgR =  is the scalar curvature;  1

T  is the energy-momentum tensor associated to ,f     

is the Maxwell tensor associated to the electromagnetic field  2; TF  is the tensor associated to a massive scalar field   

which is an unknown function of the time t; (3)  and (4)  are the two sets of Maxwell equations written in covariant form, 

for the electomagnetic field ),(= 0

ij

i FFF which is the unknown. F   is a closed antisymmetric 2-form depending only 

on the time t , 
iF 0
 and ijF  are respectively its electric and magnetic parts. 

 ,1T and
2

T  are defined by: 
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=
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1
=  (6') 
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1
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 mgT   (7) 

 where in (6), (7) as in (3) and (4), f   is the distribution function which measures the probability of the presence of 

particules in the plasma, m 0>0   is a given constant called the mass of a unknown scalar field . Notice that 
22

0
2

1
m

represents the potential associated to the scalar field  and   stands for the covariant derivative. In (2), H  is the 

pseudo-tensor of pressure and is defined by: 

 0=,=where,= ij

ijguH  
   (8) 

with, (1,0,0,0)=)(= uu  a unit future pointing time-like vector, tangent to the axis at any point. (5)  is the Boltzmann 

equation, where L X  is the Lie derivative of f   with respect to the vectors field  )(,=)( FPpFX 
 and ),( ffQ  

the collision operator we introduce later. 

The massive particules have a rest mass 0,>m normalized to the unity, we denote by )( 4RT  the tangent bundle of 
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4R  with coordinates ( ),,  px  where ),(=)(= 0 pppp 
stands for the momentum of each particule and 

1,2,3.=),(= ipp i
In fact, the charged particules move on the mass hyperbolode ),()( 44 RR TP  whose 

equation is 1==),(:)( 
 ppgppgpp xx  or equivalently, using expression (1) of g . 

 ))()(()(1= 23222120 ppbpap   (9) 

where the choice 0>0p  symbolizes the fact that, naturally, the particles eject towards the future. Due the fact that we are 

searching an homogeneous space-time, we then have fptfptPf ),,()(;)(: ,44  RRR  is the principal 

unknown of the Boltzmann equation. We define a scalar product on 
3R  by setting for p = )( ip  and q =

),(=.),( 33222112 qpqpbqpaqpqi   we then have ))()(()(= 2322212 ppbpap
g

  .  

In the presence of the electromagnetic field F , the trajectoires s ( ))(),( spsx 
 of the charged particles are no 

longer the geodesics of space-time  ,,4 gR  but the solutions of the differential system 

 












FepppPP
ds

dp
p

ds

dx
=,=,=  (10) 

where 0)(= tee  denotes the charge density of particles. The charged particles also create a current )(= JJ  

called the Maxwell current that we take in form 

 .
1

= 2

0

 eupdabfp
p

J   (11) 

According to Lichnerowicz and Chernikov, we consider a scheme in which at a given position ),( ix  only two particules 

collide without destroying each other, the sum of their momenta being preserved 

 .= q'p'qp   (12) 

where qp,  stand for momenta before the shock and 
'' qp ,  the momenta after the shock. The collision operator Q is then 

defined, using functions f  and g  on 
3R  and the above notations, by 

 QQQ = where 

  dqpqpbaBqgpfgfQ ''''

S
q ),,,,,()()(=),(

______

23 


R
 (13) 

 .),,,,,()()(=),(
______

23
 dqpqpbaBqgpfgfQ ''

S
q 



R
 (14) 

In which 
oq

q

qdg
_

2

1

det
=  and B  is a non-negative continuous real valued function of all its arguments, called the 

collision kernel or the cross-section of the collisions, on which we require the boundedness and Lipschitz continuity 

assumptions as in  .2  (12)  expresses, using (9), the conservation of the quantity 

 

 
22

11=
gg

n qpE   (15) 

called the elementary energy of the unit rest mass particles. Since ),,(= ptff  using (9) and (10), the Boltzmann 

equation (5) takes the form 
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Next, let us introduce the subgroup   of 3  defined, as in  3  by: 

.1,=,

cossin0

sincos0

00

=, R
















 







N we require that the initial datum )(0;=0 pff  verify  

 NptfpNtf ),,(=),( 00  

It is proved in  3  that if 0f  is invariant under   then so will be the solution f   of the Boltzmann equation satisfying 

=)(0, pf  ).(0 pf  

Now the well-known identity 0=
 F  imposes, given (4) that  

 0=
 J  (17) 

So (3) also implies that  

 0.=0J  (18) 

As a consequence (see  )4 , we have 

 1,2,3;=0,=
1

= 2

03
ieupdabfp

p
J iii R  (19) 

By (18), expression (11) of 
J  in which we set 0=  then allows to compute e and gives  

 ,
1

=)( 2

03
pdabf

p
te R  (19') 

which shows that a,b and f determine e . 

Now, using all what precedes, one has  

 1,2,3= ,=(0),=(0)=,= 0

2

2

000 jiEFFFE
ab

ba
F ii

ijijij

ii   (20) 

Next, to derive the equation for the scalar field ,  we use the conservation laws: 

 0=)( 2,1, 
  HTT   (21) 

A direct calculation using (6), (7), (8), and the relation 0=1,
T due to J.EHLERS , gives: 

 )(=,=,= 2

0

2,  












 mTuHFF g  *  (22) 

where 


=g*  is the d’Alembertian or the wave operator. (21) and (22) give, using the Maxwell equation (3): 

 0=4)( 2

0




  uJFmg  *  (23) 

(23) reduces, using (18), (19) and since 0=i  to: 

 0=)( 02

0

0 um   
  (24) 
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Next, it is easily seen, that: 

...

3=  H and .==
.

0

000   g (24) gives then: 

 0=13 2

0

....









  mH  (25) 

where  

 .
2

1
=with,

3
= ijtij

ij

ij

gk
kg

H   (26) 

H is called the Hubble variable. To study this non-linear second order equation in ,  we set ,
2

1
=

2
.









  we choose to 

look for a non-decreasing and non constant scalar field ,  which means 0;>
.

   

  2=
.

 (27) 

  For ,0 R there exists 0>T  such that  ,0,Tt  

 .
2

1
)( 0 t  (28) 

A direct calculation shows that the components of the tensor, 

 ,,, 21 HTT defined by (6), (6’),(7) and (8) are given, by 
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Proposition 1: The system can be written in the form:  
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0

.

  mH  (39) 

with: 0=,=,= 21

33

2
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2
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1

33

1

22   HTTTTTT   for .   

proof: Simply write Einstein equation (2) for 0==   to obtain (33), for i==   to obtain (34) and (35). (28) in 

(27) to obtain (39). Now for :   0,=21

  HTT   we add the problem of constraints 
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  The constraint equations 

Lemma 1: 1 )  Einstein equation (33), called the Hamiltonian constraint, is satisfied all over the domain of the 

solutions a and b of (34)-(35), if and only if, the initial data 
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proof: See  .6  

Remark 1: In what follows, we suppose that the initial data ,0a  ,0

.

a  ,0b  ,0

.

b  ij

iEf  ,,,, 000  verify the 

constraint (40) and (42)-(44). One must also remark that if the cosmological constant   is positive and if ,0a  ,0b  

ij

iEf  ,,,, 000  are given, then it suffices to deduce 0>0

.

a  and 0.>0

.

b  

3.FUNCTION SPACES AND LOCAL SOLUTION OF THE BOLTZMANN EQUATION  

We define now the function spaces in which we are searching the solution of the system, We also state some useful energy 
estimations. 

Définition 1: Let 0>T , Nl  and Rd be given. We define 
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Endowed with the induced distance by the norm 
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Remark 2: We choose as in   3=,2 l  and d>
2

5
 and we then have    °R°R 3333 HHd C ).( 31 Rb : 

Proposition 2: Let 
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proof:  see  .2  
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Theorem 1: Let ,0a  ,0

.

a  ,0b  ,0

.

b  ij

iEf  ,,,, 000  satistify the conditions (40), (42)-(44). Let 
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  a constant  . Then the Boltzmann equation 
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has in  ),(0, 33

pd TH R  a local unique and bounded * -weakly solution f  such that .=(0) 0ff  

proof: similar to the one in  .2  

4. LOCAL EXISTENCE OF SOLUTION TO EINSTEIN SYSTEM 

We consider the Einstein system (33)-(35) and the sources terms as 
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Next, following N.Noutchegueme and D.Dongo in  ,1  we make the change of variables as indicated below 
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we also set  
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q is the deceleration parameter and 

  is the normalized energy density, which can be written see  6   
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Using the new notations, we have  the folowing immediate consequences of the above definitions, i=1,2:  
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Proposition 3. Let 0  and 0,<0

.

b  then Einstein systems (33)-(35) have no global solution on  .0,  

Proof.  see  .6  

Now the system (33)-(35), using the values (51) and(52) can be combined, see  ,1  to give:  
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Proposition 4: The Einstein system of equation (53) and (54) can be written as a system of first order in zsH ,, ,   

as follows: 
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proof: a) We prove that system (53) and (54) implie system (56)-(59), just by derivating (47), using (53), (54), (55), (48) 

and (48’). 

b) Conversely, we prove that (56)-(59) implie (53)-(54). Let ),,,( zsH   be a solution of system (56)-(59) , we have, 
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Now, using (47), we obtain by direct computation (53). The expression (54) can be obtained by a similar computation. +  

Lemma 2: the Hubble variable satisfies the following condition: 
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Introduce the traceless tensor associated to ijk  : .= HgkL ijijij  By a direct calculation, we get  
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Lemma 3: Let 0  be given, and suppose 0;>(0)H  then H  is uniformly bounded and we have: 
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Remark 3:  Domain of the variables .,,, zsH  

One easily observes that the variables ,,, zsH  will be taken on the subset D of 
4R  defined by: 
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In what follows, we assume 0  and 0,>0

.

b   33

, ,, RTOHf rd  is also fixed. We are looking for a solution 

),,,( zsH  of (56)-(59), on the interval   0,>,,= 00 TTttI   which satisfies at  the initial instant 0= tt  the 

condition ),,,,(=))(,,,(
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0 tttt zsHtzsH   where 
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tt E   and, furthermore subject to Hamiltonian constraint (40). 

Definition 2: If x  is a real number such that  ,0,1x  we set 
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We now prove the local existence theorem of solutions to system (56), (57), (58) and (59) with the initial datum 
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Proposition 5: Let 00,> 0 t   be given, then any solution ),,,( zsH  of system (56), (57), (58) and (59) on 
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)(

0
6

0

)(
0

3

00 )(

1

)(

1 







THTH
ee

tHttH
 (69) 

 

 
   

)(
0

6

0

)(
0

6

00 )(

1

)(

1 









THTH
ee

tstts
 (70) 

 

 
   

)(
0

10

0

)(
0

10

00 )(

1

)(

1 












THTH
ee

ttzttz
 (71) 

where  
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Proof see   +.1  

In what follows, 0>C  is a constant. We will apply the standard theory on the first order differential systems. With a view to 

succeed. We will study the function Z  defined using the r.h.s of system (56), (57), (58) and (59) by  

 ).,,,,)(,,,(=),,,,( 4321   zsHtZZZZzsHtZ  (73) 

We recall  that Z  is defined on D defined by (68). We must prove that Z  is a continuous function of t , locally 

Lipschitzian in 
4),,,(= RzsHX  with the norm 

 .=
1  zsHX  

Z  is obviously a continuous function of t on one hand, on the other hand, 2Z  and 3Z  are polynomial function in zsH ,,  

and , so locally Lipschitzian. 
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Concerning now 1Z  and ,4Z  we need some energy estimations 
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Where iPp ,0
 are given by (51) and (52) . 

Proof: see   +.6  

Using lemma 4, we can write 
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Proposition 6: Let ),,,( 3
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Using (76)-(78), we get  
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Consequently, the function Z  defined by (73) is locally Lipschitzian and uniformly bounded, so by the standard theory on 

the first order differential system, we conclude that system "(56)-(59)" has a unique solution ),,,( zsH  on ],[ 00 Ttt   

which verifies at 0= tt : +).,,,(=))(,,,(
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0 tttt zsHtzsH    
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Proof: Using the change of variables (47), the system (33)-(35)  is equivalent to the system "(56)-(59)", applying 

proposition 6, the system "(56)-(59)", has a unique solution ),,,( zsH on ],[ 00 Ttt   if the initial datum 

),,,(
0000

tttt zsH   verifies (68). Taking at ,= 0tt  the initial data ,,,,
0000

tttt zsH   such that (47) hold, we realize 

that DzsH tttt  ),,,(
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, Consequently, system (56)-(59), has of course, a unique solution ),,,( zsH on 

],[ 00 Ttt  with the initial data 
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,,, tttt zsH   at t= .0t Relations (49) solved in 
2a  and 

2b  then give the unique 

solution ),( ba  of system (33)-(35). 
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5. LOCAL EXISTENCE OF SOLUTION FOR THE COUPLED SYSTEM 

we are searching in the case  0, the local solution to the system. 

The coupled system, reduces to the following system, in which a , b , ,,,,

..

22

b

b

a

a
ba  defined by formulas (47) and (48) 

are solved in :,,, zsH  
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Let us set X= 0

_

=(0)),,,,,,,,( XXpfzsH   and .=)(
0

0 tXtX  
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We will show that the map 














6543214321 ,,,,,,,,,=)( hhhhhhZZZZXh


defined by the r.h.s of system (S) defined by 

(80) is continuous of t and localy Lipschitzian in X E endowed with the norm (81). 
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The following energy estimations shall be useful in what is to follow. 
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Proof: Apart from (82 ) , the five first inequalities are just direct computation. Now for (82), recall that we require the 

boundedness and Lipschitz continuity assumption on B. We then obtain (82) by direct computation. +  
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Proof: see  6  Concerning the differences in iP  and 1,2,=, i
H

Pi
 we have the following result which is a direct 

consequence of the Lemma 5. 
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Inequalities (74) yield to:  
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this prove the proposition 7.  +  

Lemma 6: Let R00 ,  be given, then there exists the positive constants 
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Proof:  Using the function h, we obtain: 
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Using the inequalities (79), (86), (87), (90), (91) and lemma 7. We obtain the result. +  

Proposition 9: There exists a real number 0>  such that the differential system (S )  defined by (80), with the 
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initial datum X 0  at t=0( adequately fixed as above) has a unique solution X  defined over ][0,  and satisfying 

.=(0) 0XX  

Proof: Let    33

000

3

0

_
00

1

0000 ,,,1[,1,]1[]0,1[]0,,),,,( RRR dHfpHHzsH   . Consider H

,i  s 1,2=,, izii  such that : 

 [.
2

1
,

2
][,

2

1
,

2
]],,]

0000
00

1







zz
z

ss
sHHH iii  

Also consider 1),(, 021 fBff   the unit ball in  33 RdH  ,  and .,,,;, 2121

3

2

_

1

_

RR  pp Then H ,,, iii zS  

and 1,2=,, iii   satisfy the following inequalities:  

 1,2=

)(,
1

2

1
,

2

11
,

)(

2

)(

1
,

)(

2

)(

1

0

50

0

0

4
0

0

1

00

i

MtM

HHzzss

i

i

iii
























 (98) 

and we have 1,2.=1,0 iffi  Consequently, we have in (97), using (98), 
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(96) and (99) show that the function h  is locally Lipschitzian in X , proposition 9 then follows from the standard theory on 

the first order differential systems.+  
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Proof: The system (33)-(34)-(35)-(37)-(38)-(39) is equivalent to system (S ).  If we take s 0000 ,,, Hz  as defined in 

(101) and ,3
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Rp  we obtain by the proposition 9 the unique solution X of (S ) on  0,  which verifies 

fXX .=(0) 0  is also the solution of the Boltzmann equation given by theorem 1. zs, ,   and   being given by 

proposition 9, we use formula (49) which gives a and b as functions of s and z. Consequently, (a,b) is also the unique 
solution to system (33)-(35) given by theorem 2. 
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6. THE GLOBAL EXISTENCE   

We now show that the local solution to Einstein-Maxwell-Boltzmann-scalar field system (2)-(6), whose existence is proved in 

Theorem 3, is in fact for the case 0  a global solution. We will use the similar method as the one used in  1  and  .6  
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We then deduce from the definition (47) of z  and s , in terms of a  and b , using 2>
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It follows that 
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Lemma 10: Let ba,  be fixed,   ,);,(),,,(0,
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But by (109) and (112), we deduce from (111) that 
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(113) and (114), show that 

G  is lipschitzian in ( ),,, fp  with respect to the norm of the Banach space 

.)( 2333 RRR  dH  The existence of a unique solution ( ),,, fp  of system (107) on a interval   0>,, 00 tt  
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such that (   ),,,(=),,,
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0 tttt
fptfp   is then guaranted by the standard theorem on the first order differential 

systems. +  

proposition 11: Let  ,0,0 Tt   then there exists a real number 0,>  depending only on the absolute constant 

a
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00 ,,,,, pTbab  , 00 , and r  such that system (S )  defined by (83) with the initial datum 
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uniformly bounded, if we fix (   ,),
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Now if we substitute 

f  to f  in (100) given by theorem 4, we obtain  
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Next by proposition 5 there exists a real number   belonging to  0,1  such that if f is given in ),;,( 3
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then subsystem (S )()()() 4321 SSS   of (S )  has a unique solution  ,,, zsH  on  00 ,tt  satisfying 

inequalities (78) and the condition    .)(),(),(),(=,,, 00000 
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we can now define the map    

  pfzsHfzsF tt ,,,,,,,),,(;:
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   (117) 

We are going to show that we can find a real number 0>  independent of 0t  such that, F defined above induces a 

contracting map of the complete metric space    ,
0


t which consequently will have a unique fixed point ).,,( fzs  We 

will then deduce the existence of H , ,,  and p  such that (S ),  admits the solution 
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0

),,,,,,,( tpfzsH  . If we fix in the r h s of    2
0
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0
2,

0
1,, tt EEzs   and );,( 3

00

3

, R ttHf rd ;  
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Moreover, ),,,,,,,( pfzsH   verifies the following integral system, with t   :1,2,3=,0, i  
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Let  
11111111 ,,,,,,, pfzsH   and  

22222222 ,,,,,,, pfzsH   be two solutions corresponding 

respectivily to ),,(
111 fzs  and ),,(

222 fzs  as obtained above. We write our integral system (118)-(125) for i=1,2  

next we take the difference. Taking now the devoted to local existence, we get  
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Then inequality (136) insures that the map  pfzsHfzsF tt ,,,,,,,,)),,((;:
00

 
   defined by (117) 

induces a contraction ),,(),,( fzsfzs   in the complete metric space 
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Now to determine H  ,  , ,p and ,  consider system (S )  in which we substitute 

f  by 


sf ,  and 


z  by s  

and z . Since s is known, relation (57) determines the product H   as function of s. Since s and H  are known, 

(58) provides H and (57) gives .  It remains to determine ,p  from the three equations (S.8)-(S.9)-(S.10) of system (S )
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  where 0M  is given by (103) ,  C>0 is a constant. Since H  ,   are bounded, 

the above inequality shows that subsystem (S.8)-(S.9)-(S.10) of system (S )  for the single unknown p  is globally 

lipschitzian in :p  hence, there exists a unique solution )(= ipp  such that =)( 0tp  ),( 0tp


 global on  00 ,tt . 

To determine  and ,  consider the equations ( 5S )-( 6S ) of system (S ) , where H  is known and bounded. using 

(100) , the subsystem ( 5S )-( 6S ) of system (S )  is globally lipschitzian in  and :  hence there exists a unique solution 
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Consequently, we obtain the unique solution  pfzsH ,,,,,,,   of system (S ) in +.
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