
I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 3  N u m b e r  0 2  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

7135 | P a g e                                        
M a y  2 0 1 7                                               w w w . c i r w o r l d . c o m  

STABILITY OF tredecic FUNCTIONAL EQUATION IN MATRIX 
NORMED SPACES 

Murali Ramdoss 1 , Sandra Pinelas 2 , Vithya Veeramani 3  
Departamento de Ciencias Exatas e Naturais,   Academia Militar, 2720-113 Amadora, Portugal 

ABSTRACT 
In this current work, we define and find the general solution of the following tredecic functional equation 

)3(715)4(286)5(78)6(13)7( yxfyxfyxfyxfyxf   

  )(1287)(1716)(1716)2(1287 yxfxfyxfyxf   

)(13!=)6()5()4(78)3(286)2(715 yfyxfyxfyxfyxfyxf   

where 6227020800=13! . We also investigate and establish the generalized Ulam-Hyers stability of this functional 

equation in matrix normed spaces by using the fixed point method.  

Introduction 
In 1940, an interesting topic was presented by S. M. Ulam [18] triggered the study of stability problems for various 
functional equations. He addressed a question concerning the stability of homomorphism. In the following year, 1941, D. 
H. Hyers [5] was able to give a partial solution to Ulam’s question. The result of Hyers was then generalized by Aoki [1] for 
additive mappings. In 1978, Th. M. Rassias [14] succeeded in extending the result of Hyers theorem by weakening the 
condition for the Cauchy difference.  

The stability phenomenon that was presented by Th. M. Rassias is called the generalized Hyers-Ulam stability. In 1994, a 
generalization of the Rassias theorem was obtained by Gavruta [4] by replacing the unbounded Cauchy difference by a 
general control function. A further generalization of the Hyers-Ulam stability for a large class of mapping was obtained by 
Isac and Th. M. Rassias [6]. They also presented some applications in non-linear analysis, especially in fixed point theory. 
This terminology may also be applied to the cases of other functional equations [2, 3, 13, 15, 17, 20]. Also, the generalized 
Hyers-Ulam stability of functional equations and inequalities in matrix normed spaces has been studied by number of 
authors [7, 8, 9, 10, 12, 19].  

K. Ravi and B. V. Senthil Kumar [16] discussed the general solution of undecic functional equation and proved the stability 

of this functional equation in quasi   - normed spaces by applying the fixed point method. 

In this paper, we introduce the following new functional equation 

)3(715)4(286)5(78)6(13)7( yxfyxfyxfyxfyxf   

  )(1287)(1716)(1716)2(1287 yxfxfyxfyxf    

 )(13!=)6()5()4(78)3(286)2(715 yfyxfyxfyxfyxfyxf   (1) 

where 6227020800=13!  is said to be tredecic functional equation since the function 
13=)( cxxf  is its solution.  

In Section 2, we study the tredecic functional equation (1). 

In Section 3, using the fixed point technique, we prove the Hyers-Ulam stability of the functional equation (1) in matrix 
normed spaces. 

Tredecic Functional Equation (1)  

In this section, we study the tredecic functional equation (1). For this, let us consider A  and B  be real vector spaces. 

Theorem 1 If a mapping BA :f  satisfies the functional equation (1) for all Ayx, , then )(2=)(2 13 xfxf  

for all Ax .  

Proof. Letting 0== yx  in (1), one gets 0=(0)f . Replacing 0=x , xy =  and xx = , xy =  in (1) and 

adding the two resulting equations, we get  

 )(=)( xfxf   

Hence, f  is an odd mapping. Replacing 0=x , xy 2=  and xx 7= , xy =  in (1) and Subtracting Equations the two 
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resulting equations, we get 

)(91287)(10650)(11286)(1290)(1313 xfxfxfxfxf   

 )(4858)(5715)(6858)(71716)(81924 xfxfxfxfxf    

 0=)(6227020801)(26227020384)(378 xfxfxf   (2) 

 for all .Ax  Replacing ),( yx  by ),(6 xx  in (1)and and multiplying by 13 , we get 

)(99295)(103718)(111014)(12169)(1313 xfxfxfxfxf   

 )(516731)(622308)(722308)(816731 xfxfxfxf    

 0=)(08095127023)(21014)(33718)(49295 xfxfxfxf   (3) 

 for all .Ax  Subtracting Equations (2) and (3), we arrive at  

)(814807)(98008)(103068)(11728)(1279 xfxfxfxfxf   

 )(33640)(48437)(516016)(621450 xfxfxfxf    

 0=)(08717829103)(26227019370)(720592 xfxfxf   (4) 

 for all .Ax  Replacing ),( yx  by ),(5 xx  in (1) and multiplying by 79 , we get 

)(856485)(922594)(106162)(111027)(1279 xfxfxfxfxf   

 )(4101673)(5135564)(6135564)(7101673 xfxfxfxf    

 0=)(004919346493)(222594)(356485 xfxfxf   (5) 

 for all .Ax  Subtracting Equations (4) and (5), we have 

)(781081)(841678)(914586)(103094)(11299 xfxfxfxfxf   

 )(493236)(5119548)(6114114 xfxfxf    

 0=)(005791129403)(26227041964)(352845 xfxfxf   (6) 

 for all .Ax  Replacing ),( yx  by ),(4 xx  in (1) and multiplying by 299 , we obtain 

)(7213785)(885514)(923322)(103887)(11299 xfxfxfxfxf   

 )(4513084)(5513084)(6384813 xfxfxf    

 0=)(0001861879138)(2213486)(3384813 xfxfxf   (7) 

 for all .Ax  Subtracting Equations (6) and (7), we obtain 

)(6270699)(7132704)(843836)(98736)(10793 xfxfxfxfxf   

 )(26226828478)(4419848)(5393536 xfxfxf    

 0=)(0002440992078)(3331968 xfxf   (8) 

 for all .Ax  Replacing ),( yx  by ),(3 xx  in (1) and multiplying by 793 , we arrive at  

)(6566995)(7226798)(861854)(910309)(10793 xfxfxfxfxf   

 )(31359995)(41360788)(51020591 xfxfxf    

 0=)(0004938028000)(21010282 xfxf   (9) 
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 for all .Ax  Subtracting Equations (8) and (9), we get 

)(5627055)(6296296)(794094)(818018)(91573 xfxfxfxfxf    

 0=)(0007379020078)(26227838760)(31028027)(4940940 xfxfxfxf   (10) 

 for all .Ax  Replacing ),( yx  by ),(2 xx  in (1) and multiplying by 1573 , we have 

)(6449878)(7122694)(820449)(91573 xfxfxfxf   

 )(32678819)(42022878)(51124695 xfxfxf    

 0=)(0009795102144)(22576574 xfxf   (11) 

 for all .Ax  Subtracting Equations (10) and (11), we obtain 

)(41081938)(5497640)(6153582)(728600)(82431 xfxfxfxfxf    

 0=)(00001717412222)(26225262186)(31650792 xfxfxf   (12) 

 for all .Ax  Replacing ),( yx  by ),( xx  in (1) and multiplying by 2431 , we obtain 

)(41706562)(5692835)(6189618)(731603)(82431 xfxfxfxfxf    

 0=)(00001513789000)(23476330)(32939079 xfxfxf   (13) 

 for all .Ax  Subtracting Equations (15) and (17), we arrive at  

)(00003231201222)(4624624)(5195195)(636036)(73003 xfxfxfxfxf    

 0=)(26228738516)(31288287 xfxf   (14) 

 for all .Ax  Replacing ),( yx  by )(0, x  in (1) and multiplying by 3003 , we obtain 

)(31288287)(4624624)(5195195)(636036)(73003 xfxfxfxfxf    

 0=)(00001869974217)(21717716 xfxf   (15) 

 for all .Ax  Subtracting Equations (14) and (15), we get  

 0=)(00005101175439)(26227020800 xfxf   (16) 

 for all .Ax  From (16)  

 Aforallx)(2=)(2 13 xfxf  (17) 

 Hence BA :f  is a tredecic mapping. This completes the proof.  

Stability of Tredecic Functional Equation in Matrix Normed Spaces 

In this section, we will investigate the Ulam-Hyers stability for the functional equation (1) in matrix normed spaces by using 
the fixed point method. 

Throughout this section, let us consider  
n

X .,  be a matrix normed space,  
n

Y .,  be a matrix Banach space and let 

n  be a fixed non-negative integer. 

For a mapping YXf : , define YXf 2:D  and )()(: 2 YMXMf nnn D  by, for all Xba ,  and all 

)(][=],[= XMyyxx nijij  . 

Theorem 2  Let 1= l  be fixed and )[0,: 2 X  be a function such that there exists a 13<  with  
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 X.ba,)
2

,
2

(2),( 13 
ll

l ba
ba   (18) 

 Let YXf :  be a mapping satisfying  

 (X).M][y=y],[x=x),(])[],([ nijij

1=,

 ijij

n

ji

ijijn yxyxf D  (19) 

 Then there exists a unique tredecic mapping YX :T  such that  

 (X),M][x=x)(
)(12

])([])([ nij13

2

1

1=,








 ij

l

n

ji
nijnijn xyxf 




T  (20) 

 where  ),(579),(613),(7)(0,2
13!

1
=)( ijijijijijijijij xxxxxxxx    

     ),(21573),(3793),(4299 ijijijijijij xxxxxx    

        )(0,3003),(2431 ijijij xxx   . 

Proof. Substituting n=1 in (19), we obtain  

 ),(),( babaf D  (21) 

 Replacing ),( ba  by )(0,2a  and in (21), we get 

)(6429)(8208)(1065)(1212)(14 afafafafaf    

 )(0,2)(26227020371)(4572 aafaf   (22) 

 for all .Xa  Replacing ),( ba  by ),(7 aa  in (21), we obtain 

)(10715)(11286)(1278)(1313)(14 afafafafaf    

   )(61287)(71716)(81716)(91287 afafafaf    

 ),(7)(6227020801)(213)(378)(4286)(5715 aaafafafafaf   (23) 

 for all .Xa  It follows from (22) and (23), we arrive at 

)(91287)(10650)(11286)(1290)(1313 afafafafaf   

 )(4858)(5715)(6858)(71716)(81924 afafafafaf    

 ),(7)(0,2)(6227020801)(26227020384)(378 aaaafafaf    (24) 

 for all .Xa  Replacing ),( ba  by ),(6 aa  in (21) and multiplying by 13 , we get 

)(99295)(103718)(111014)(12169)(1313 afafafafaf   

 )(516731)(622308)(722308)(816731 afafafaf    

 ),(613)(08095127023)(21014)(33718)(49295 aaafafafaf   (25) 

 for all .Xa  It follows from (24) and (25), we arrive at 

)(720592)(814807)(98008)(103068)(11728)(1279 afafafafafaf   
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 )(33640)(48437)(516016)(621450 afafafaf    

 ),(613),(7)(0,2)(08717829103)(26227019370 aaaaaafaf    (26) 

 for all .Xa  Replacing ),( ba  by ),(5 aa  in (21) and multiplying by 79 , we get 

)(856485)(922594)(106162)(111027)(1279 afafafafaf   

 )(4101673)(5135564)(6135564)(7101673 afafafaf    

 ),(579)(004919346493)(222594)(356485 aaafafaf   (27) 

 for all .Xa  It follows from (26) and (27), we arrive at 

)(781081)(841678)(914586)(103094)(11299 afafafafaf   

 )(352845)(26227041964)(493236)(5119548)(6114114 afafafafaf    

 ),(579),(613),(7)(0,2)(005791129403 aaaaaaaaf    (28) 

 for all .Xa  Replacing ),( ba  by ),(4 aa  in (21) and multiplying by 299 , we get 

)(7213785)(885514)(923322)(103887)(11299 afafafafaf   

 )(4513084)(5513084)(6384813 afafaf    

 ),(4299)(0001861879138)(2213486)(3384813 aaafafaf   (29) 

 for all .Xa  It follows from (28) and (29), we obtain 

)(6270699)(7132704)(843836)(98736)(10793 afafafafaf   

 )(0002440992078)(26226828478)(4419848)(5393536 afafafaf    

 ),(4299),(579),(613),(7)(0,2)(3331968 aaaaaaaaaaf    (30) 

 for all .Xa  Replacing ),( ba  by ),(3 aa  in (21) and multiplying by 793 , we arrive at 

)(6566995)(7226798)(861854)(910309)(10793 afafafafaf   

 )(31359995)(41360788)(51020591 afafaf    

 ),(3793)(0004938028000)(21010282 aaafaf   (31) 

 for all .Xa  It follows from (30) and (31), we get 

)(5627055)(6296296)(794094)(818018)(91573 afafafafaf   

 )(0007379020078)(26227838760)(31028027)(4940940 afafafaf    

 ),(3793),(4299),(579),(613),(7)(0,2 aaaaaaaaaaa    (32) 

 for all .Xa  Replacing ),( ba  by ),(2 aa  in (21) and multiplying by 1573 , we arrive at 

)(6449878)(7122694)(820449)(91573 afafafaf   

 )(32678819)(42022878)(51124695 afafaf    
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 ),(21573)(0009795102144)(22576574 aaafaf   (33) 

 for all .Xa  It follows from (32) and (33), we obtain 

)(41081938)(5497640)(6153582)(728600)(82431 afafafafaf   

 )(00001717412222)(26225262186)(31650792 afafaf    

    ),(4299),(579),(613),(7)(0,2 aaaaaaaaa     

 ),(21573),(3793 aaaa    (34) 

 for all .Xa  Replacing ),( ba  by ),( aa  in (21) and multiplying by 2431 , we obtain 

)(41706562)(5692835)(6189618)(731603)(82431 afafafafaf    

 ),(2431)(00001513789000)(23476330)(32939079 aaafafaf   (35) 

 for all .Xa  It follows from (37) and (35), we arrive at 

)(00003231201222)(4624624)(5195195)(636036)(73003 afafafafaf   

 )(26228738516)(31288287 afaf   

     ),(4299),(579),(613),(7)(0,2 aaaaaaaaa     

 ),(2431),(21573),(3793 aaaaaa    (36) 

 for all .Xa  Replacing ),( ba  by )(0,a  in (21) and multiplying by 3003 , we obtain 

)(31288287)(4624624)(5195195)(636036)(73003 afafafafaf    

 )(0,3003)(00001869974217)(21717716 aafaf   (37) 

 for all .Xa  It follows from (36) and (37), we get 

)(00005101175439)(26227020800 afaf    

 ),(4299),(579),(613),(7)(0,2 aaaaaaaaa    (38) 

     )(0,3003),(2431),(21573),(3793 aaaaaaa    

for all .Xa  From (38) 

 ),(579),(613),(7))(0,2
13!

1
)(2)(2 13 aaaaaaaafaf    

       ),(21573),(3793),(4299 aaaaaa     

 )(0,3003),(2431 aaa    (39) 

 Therefore,  

 X.a)()(2)(2 13  aafaf   (40) 

 Thus  
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 X.a)(
2

)(2
2

1
)(

13

2

1

13









 

aafaf

l

l

l



 (41) 

 We consider the set  YXf :=M  and introduce the generalized metric   on M  as follows:  

 },),()()(:{inf=),( Xaaagafgf    R  

It is easy to check that ),( M  is a complete generalized metric (see also [11]). Define the mapping 

MMP :  by  

 X.andaf)(2
2

1
=)(

13
 MP afaf l

l
 

Let Mgf ,  and   be an arbitrary constant with  =),( gf . Then 

     )()()( aagaf    for all .Xa  

Utilizing (18), we find that  

   )()(2
2

1
)(2

2

1
=)()(

1313
aagafagaf l

l

l

l
PP   for all Xa .  

Hence it holds that  ),( gf PP , that is, ),(),( gfgf  PP   for all Mgf , . 

It follows from (41) that 
13

2

1

2
),(








 



l

ff


 P . 

Therefore according to Theorem 2.2 in [3], there exists a mapping YX :T  which satisfying:   

1.  T  is a unique fixed point of P  in the set   <),(:= gfg MS , which is satisfied  

 X.a)(2=)(2 13 aa ll TT  (42) 

 In other words, there exists a   satisfying  

 X.a)()()(  aagaf   

2.  0),( TP fk  as k . This implies that  

 X.a)(=)(2
2

1
lim 13




aaf kl

kl
k

T  

3.  ),(
1

1
),( fff PT 





 , which implies the inequality .

)(12
),(

13

2

1









l

f T   

 X.a)(
)(12

)()(So
13

2

1








aaaf

l





T  (43) 

It follows from (18) and (19) that  

 ),2(2
2

1
lim=),(

13
bafba klkl

kl
k

DDT
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 0=),(
2

2
lim),2(2

2

1
lim 1313

baba
kl

kkl

k

klkl

kl
k







  

 for all Xba , . Hence 

for all Xba , . Therefore, the mapping YX :T  is tredecic mapping. By Lemma 2.1 in [9] and (43),  

 )()(])([])([
1=,

ijij

n

ji

ijnijn xxfxxf TT    

 (X),M][x=x)(
)(12

nij13

2

1

1=,








 ij

l

n

ji

x



 

 where  ),(579),(613),(7)(0,2
13!

1
=)( ijijijijijijijij xxxxxxxx    

      ),(21573),(3793),(4299 ijijijijijij xxxxxx    

         .)(0,3003),(2431 ijijij xxx    

Thus YX :T  is a unique tredecic mapping satisfying (20).  

Corollary 1  Let 1= l  be fixed and let ,t  be positive real numbers with 13t . Let YXf :  be a mapping 

such that  

 (X).M][y=y],[x=x)(])[],([ nijij

1=,


t

ij

t

ij

n

ji
nijijn yxyxf D  (44) 

 Then there exists a unique tredecic mapping YX :T  such that  

 
t

ijt

s
n

ji
nijnijn x

l
xxf

)2(2
])([])([

13
1=, 

 


T     )(][= XMxx nij  ,  

where ]8)13(7)79(6)299(5)793(4)1573(3)2432(2[3003
13!

= ttttttt

s 


   

Proof. The proof follows from Theorem 2 by taking )(=),(
tt

baba   for all Xba , . Then we can choose 

13)(2= tl , and we can obtain the required result.  

Example 3 Let RR:  be a function defined by 

 




otherwise

xifx
x

,

1<,
=)(

13




  

where 0>  is a constant, and define a function RR:f  by 

 

 
n

n

n

x
xf

13
0= 2

)(2
=)(





 

for all .Rx  Then f  satisfies the inequality 

)3(715)4(286)5(78)6(13)7( yxfyxfyxfyxfyxf   
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  )(1287)(1716)(1716)2(1287 yxfxfyxfyxf   

  )5()4(78)3(286)2(715 yxfyxfyxfyxf    

 )((8192)
8191

2)(622702899
)(13!)6(

13132 yxyfyxf 


 (45) 

 for all Ryx, . Then there do not exists a tredecic mapping RRT :  and a constant 0>  such 

that  

 .x)()(
13

RT  xxxf   (46) 

 Proof. It is easy to see that f  is bounded by 
8191

8192
 on R . 

Next we have to show that f  satisfies (45). 

If 0== yx , then (45) is trivial.  

If 
13

1313

2

1
 yx  , then L.H.S of (45) is less than .

8191

2)(8192)(622702899 
 

Suppose that 
13

1313

2

1
<<0 yx  , then there exists a non-negative integer k  such that  

 ,
2

1
<

2

1
13

1313

1)13( kk
yx 


 (47) 

 so that 
13

131)13(

13

131)13(

2

1
<,2

2

1
<2 yx kk  , and  

1,1)()6(),25(),24(),23(2),2(),2(),2(),22(),23(2),4(),25(),26(),27(),2(),2(2  yxyxyxyxyxyxyxyxyxyxyxyxyxyx nnnnnnnnnnnnnnn

 

for all 10,1,2,...,= kn . Hence 

))4((2286))5((278))6((213))7((2 yxyxyxyx nnnn    

   ))((21716))2((21287))3((2715 yxyxyx nnn    

 ))3((2286))2((2715))((21287)(21716 yxyxyxx nnnn    

   0=)(213!))6((2))5((2))4((278 yyxyxyx nnnn    

for 10,1,2,...,= kn . From the definition of f  and (47), we obtain that 

)3(715)4(286)5(78)6(13)7( yxfyxfyxfyxfyxf   

 )2(715)(1287)(1716)(1716)2(1287 yxfyxfxfyxfyxf   

  )(13!)6()5()4(78)3(286 yfyxfyxfyxfyxf   

))5((278))6((213))7((2
2

1
130=

yxyxyx nnn

nn



  

    ))2((21287))3((2715))4((2286 yxyxyx nnn    

    ))((21287)(21716))((21716 yxxyx nnn    
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    ))4((278))3((2286))2((2715 yxyxyx nnn    

      )(213!))6((2))5((2 yyxyx nnn    

81912

7028992)(8192)(622
=

2

2)(622702899
1313= knkn





  

).((8192)
8191

2)(622702899 13132 yx    

Thus f  satisfies (45) for all Rzyx ,,  with .
2

1
<<0

13

1313
yx   

Now, we claim that the tredecic functional equation (1) is not stable for 13=t  in corollary 1. Suppose that there exists a 

tredecic mapping RRT :  and a constant 0>  satisfying (46). Then there exists a constant Rc  such that 

19=)( cxxT  for any Rx . Thus we obtain the following inequality  

 
13

)()( xcxf    (48) 

 Let Nm  with cm  > . If )
2

1
(0,

1


m
x , then (0,1)2 xn  for all 10,1,2,...,= mn , and for this 

case we get  

 
1313

13

131

0=
13

0=

)(>=
2

)(2

2

)(2
=)( xcxm

xx
xf

n

nm

n
n

n

n







 

which is a contradiction to (48). Thus the tredecic functional equation (1) is not stable for 13=t .  

Conclusion 

In this investigation, we identified a general solution of tredecic functional equation and establised the generalized Ulam -
Hyers stability of this functional equation in matrix normed spaces by using the fixed point method and also provided an 
example for non-stability.  
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