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ABSTRACT 

In this paper, a three-parameter continuous distribution, namely, Inverted Beta-Lindley (IBL) distribution is proposed and 
studied. The new model turns out to be quite flexible for analyzing positive data and has various shapes of density and 
hazard rate functions. Several statistical properties associated with this distribution are derived. Moreover, point estimation 
via method of moments and maximum likelihood method are studied and the observed information matrix is derived. An 
application of the new model to real data shows that it can give consistently a better fit than other important lifetime 
models. 
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1. INTRODUCTION 

The beta distribution with support in the standard unit interval (0, 1) has been utilized extensively in statistical theory and 
practice for over 100 years. It is very versatile and a variety of uncertainties can be usefully modeled by this distribution, 
since it can take an amazingly great variety of forms depending on the values of its parameters. On the other hand, the 
inverted beta (IB) distribution with support in (0, ∞) (also known as beta prime distribution or beta distribution of the second 
kind) can be used to model positive real data. Its probability density function (p.d.f.) with two positive parameters shape 
parameters   and   is given by 
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where  (   )   ( ) ( )  (   ) is the beta function and  ( ) is the gamma function. 

The IB distribution has been studied by several authors. McDonald & Richards [14] discussed its properties and obtained 

the maximum likelihood estimates (MLEs) of the model parameters. The behavior of its hazard ratio function has been 
examined by McDonald & Richards [13]. Bookstaber & McDonald [2] showed that this distribution is quite useful in the 
empirical estimation of security returns and in facilitating the development of option pricing models (and other models) that 
depend on the specification and mathematical manipulation of distributions. Mixtures of two IB distributions have been 
considered by McDonald & Butler [11] who have applied them in the analysis of unemployment duration. McDonald and 
Butler [12] have used this distribution while discussing regression models for positive random variables. Other applications 
in modeling insurance loss processes have been illustrated by Cummins et al. [3]. McDonald and Bookstaber [10] have 
developed an option pricing formula based on this distribution that includes the widely used Black Scholes formula based 
on the assumption of log-normally distributed returns. More recently, Vargo [19] developed moment-ratio diagrams for the 

IB distribution. 
Lindley [9] derived a distribution for modeling waiting times and survival data, which is called later as Lindley distribution 
(LD). The probability density function of the Lindley distribution is given by: 
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Ghitany et. al. [4] studied most of the statistical and reliability properties showing that LD afford a better fitting model than 
the exponential distribution for some cases. Mixture distributions express complex probability distributions in terms of 
simpler ones, which are the mixture components. They can be used for modeling a statistical population with 
subpopulations. Using the concept of mixture distributions provides a good model for several types of data with different 
characteristics. In this paper, we introduce a new distribution having three parameters which is based on mixing the 
inverted beta distribution and Lindley distributions, so-called the Inverted Beta Lindley distribution (IBL). This paper is 
organized as follows; Section 2 introduces the Inverted Beta Lindley (IBL) model formulation. The distributional properties 
of IBL distribution including the hazard and survival functions, the behavior of the probability density function, mean 
residual life and reversed failure rate, the moments and the associated moments, Lorenz and Bonferroni curves and finally 
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probability and cumulative function of order statistics are studied in Section 3. Section 4 concerns with the point and 
interval estimations of IBL distribution. Finally, a real data life application of bladder cancer data are illustrated the potential 
of IBL distribution compared with other distributions in Section 5. 

2. MODEL FORMULATION 

The probability density function (p.d.f.) of IBL distribution can be shown as a mixture of Lindley and Inverted Beta 
distributions as follows 
 

 (       )     (   )  (   )  (     ) 
 

where,   
 

   
 . and   (   ) ,   (     ) are the Lindley and the inverted beta distributions, with density functions given in 

equations (2) and (1) respectively. 
 

The p.d.f of IBL distribution is defined by: 
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The corresponding cumulative distribution function is  
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is the hypergeometric function. 

3. PROPERTIES OF THE MODEL 

In the Section, we discuss some of the main properties of the IBL distribution. 

3.1. The Hazard and Survival Functions 

The survival function examines the chance of breakdowns of organisms or technical units etc. occur beyond a given point 
in time. To monitor the lifetime of a unit across the support of its lifetime distribution, the hazard rate is used. The hazard 
rate measures the tendency to fail or to die depending on the age reached and it thus plays a key role in classifying 
lifetime distributions. The hazard rate function defined by  ( )   ( )  ( )), where  ( )  (   ( )) is the survival 

function. From (3) and (4), the survival and failure (or hazard) rate functions for IBL are obtained by: 
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3.2. Shapes of the IBL Distribution 

In this section, we discuss the possible shapes of the p.d.f. (3) and the hazard rate function (6). It is first observed that 
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          (a)                                                                                          (b) 

          (c)                                                                                        (d) 

 

Fig 1: Plots of IBL probability density function 

 

Plots (a), (b), (c) and (d) of Figure 1 indicate how the parameters  ,  , and   affect the IBL density and show the flexibility 

of density shapes. As can be seen from Figure 1 the p.d.f. of IBL is decreasing, decreasing-increasing-decreasing, 
unimodal and bimodal. Moreover, as can be seen from Plots (a), (b), (c) and (d) of Figure 2, the hazard rate functions is 
decreasing, decreasing-upside-down bathtub, upside-down bathtub and increasing-decreasing upside-down bathtub. It 
can be seen from these plots that the density and hazard rate functions can take various forms depending on the 
parameter values. 

     (a)                                                                                          (b) 

    
(c)                                                                                          

(d) 

 

Fig 2: Plots of 
IBL hazard 

rate function 

3.3. Mean Residual Life and Reversed Failure Rate 

Given that a component survives to time    , the residual life is the period beyond t until the time of failure and defined 
by the conditional random variable        . In reliability, it is well known that the mean residual life function determine 
the distribution uniquely (Gupta & Gupta [5]). We now need to find the first two consecutive moments of the residual life. 

The r
th

 moments of the residual life is given by: 
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The mean residual life (MRL) function of IBL distribution is obtained by the following form   
 

              ( )   (       )  
 

 ( )
∫  ( )

 

 
   

 

             

 
     (      )

(         (      ) 
  (   ) ( )   ̃ (            )

 (   )
)
 

                
(
 

 
)(   ) (   )  (   )    . (      )  (   )(      )    (          

 

 
)/

(   ) ( ) (   )(         (      ) 
  (   ) ( )   ̃ (            )

 (   )
)

 

 
Figure 3 displays the behavior of mean residual life of IBL distribution at different values of the parameters  ,  , and  . 

 
       (a)                                                                                           (b) 

   
       (c)                                                                                           (d) 

Fig 3: Plots of the mean residual life of IBL 

 

 

 

 

 

The second moment of the residual life time of IBL distribution takes the form: 
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In addition, in reliability, it is well known that the mean reversed residual life and ratio of two consecutive moments of 
reversed residual life characterize the distribution uniquely; for more details see Kundu & Nanda [7] and Nanda, et. al. 
[17]. The reversed failure for IBL is derived as follows: 
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The r

th
 moments of the reversed residual life is given by: 
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Thus the mean of the reversed residual life of IBL is given by: 
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3.4. Moments and Associated Measures 

The first four moments about the origin of IBL distribution are: 
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The second central moments about the mean is given by 
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Therefore, the mean and variance of IBL are as follows 
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The moment generating   ( ) and characteristic functions   ( ) for IBL distribution are given by 
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where U (a, b, z) is the confluent hypergeometric function. 
 
Moreover, the coefficients of variation (CV), skewness (  ) and kurtosis (  ) measures of IBL distribution can be obtained 

from the expressions respectively 
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where    and    are the third and the fourth central moments of IBL about the mean. 
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3.5. Lorenz and Bonferroni Curves 

The Bonferroni and Lorenz curves have applications not only in economics to study income and poverty, but also in other 
fields like reliability, demography, insurance and medicine. For IBL distribution, Lorenz and Bonferroni curves are: 
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The scaled total time on test transform of a distribution function can be written as: 
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3.6. Probability and Cumulative Function of Order Statistics 

The distribution of extreme values plays an important role in statistical applications. In this section the probability and 
cumulative function of order statistics for IBL distribution are introduced. Suppose            is a random sample from 
IBL distribution. Let                  denote the corresponding order statistics. The probability density function and 

the cumulative distribution function of the jth order statistic, say       , are given by 
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4. ESTIMATION AND INFERENCE 

Estimating the unknown parameters of a distribution is essential in applied statistics. In this section, we consider maximum 

likelihood estimation (MLE) to estimate the involved parameters and the method of moment estimates (MME). Moreover, 

the asymptotic confidence intervals for the parameters of IBL distribution will be derived using Fisher information matrix. 

4.1. Method of Moments Estimates 

By equating the first three moments of the population of IBL distribution with the corresponding sample moments, the 
MME equations are 
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Equations (7), (8), and (9) take the form: 
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Substituting from (13) and (14) into (12) we obtain, 

                 (                                      )                                          (15)                                                                                                                                        

Where, 

     
 (      ),        

 (      )    (   
     )    (      )    

 , 

     
     

 (        )    (    
      )    (        )     

       ,      

      
     

 (        )      (   
    )     (        )     

               , 
       

     
 (        )      (    

      )     (        )     
                  , 

       
     

 (      )    (   
      )    (        )    

                 , 

       
    

 (      )    (  
      )    (      )                      , 

       
                            

and 

      
                 

 
Solving equation (15) we can get  ̂. In addition, the MME of the other parameters   and   can be written in terms of  ̂ 

obtained from (15) by substituting in (13) and (14) as follows: 
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4.2. Maximum Likelihood Estimates 

The method of maximum likelihood consists of maximizing the likelihood function with respect to the parameters 
          . Let               be a random sample of size n from inverted beta-Lindley distribution with p.d.f. (3), the log-

likelihood function of IBL is given by: 
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It follows that the maximum likelihood estimators (MLEs), say  ̂,  ̂ and  ̂ are the simultaneous solutions of the equations. 

Differentiation of    (       ) with respect to            yields; 
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where  ( )is the digamma function given by  ( )    ( )  ( ). The solution of this nonlinear system of equations has not 

closed form and need to be solved numerically. Certain numerical iterative techniques may be used for estimating the 
parameters and the global maxima of the log-likelihood can be investigated by setting different starting values for the 
parameters.  
In order to determine confidence intervals for the distribution parameters, we need the information matrix. The elements of 
the 3× 3 observed information matrix  ( ) are given by:  
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where  ( )( ) is the ploygamma function of order n defined as is the n-th derivative of the digamma function. Under 

conditions that are fulfilled such as the parameters lying in the interior of the parameter space but not on the boundary, the 

asymptotic distribution of √ ( ̂   ) is   (      ( )), where I(  ) = E{ J(  ) } is the expected information matrix. The 

approximate multivariate normal distribution   (      ( )), where    ( ) is the inverse observed information matrix 

evaluated at     ̂ be used to determine approximate confidence intervals for the distribution parameters.

5. APPLICATION 

Consider a data set corresponding to remission times (in months) of a random sample of 128 bladder cancer patients 
given in Lee & Wang [8]. The data are given as follows: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 

4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 
0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 
10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 
1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 
2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. We have 
fitted the IBL distribution to the dataset using MLE. The proposed Inverted Beta-Lindley distribution is compared with the 
inverted beta (IB), Lindley (LD) and the following models: 
 

 The Beta Exponentiated Pareto (BEP) distribution Zea et al. [20] with density function, 

   ( )  
    

 (   )    (  .
 

 
/
 
)
    

(  (  .
 

 
/
 
)
 

)

   

                  

 

 The Beta Pareto (BP) distribution Akinsete et al. [1] with density function, 

   ( )  
 

   (   )
(  .

 

 
/
 
)
   

.
 

 
/
    

                                       

 

 The Exponentiated Pareto (EP) distribution Gupta et al. [6] with density function,  
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 The Pareto distribution with density function, 
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 The Beta Exponential (BE) distribution Nadarajah & Kotz [16] with density function, 
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 The Beta Lindley (BL) distribution Merovci & Sharma [15] with density function, 
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 The Gamma distribution with density function, 
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 The Beta Transmuted Weibull (BTW) distribution Pal & Tiensuwan [18] with density function, 
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To verify the goodness of fit of certain statistical models, some goodness-of-fit statistics shall be used. They are computed 
using the symbolic computation package Mathematica. The following goodness-of-fit statistics are considered: the log-
likelihood function evaluated at the MLEs, the Akaike information criterion (AIC), the Bayesian information criterion 
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(BIC),the consistent Akaike information criteria (CAIC) and the Kolmogorov Smirnov (K-S) statistics. These statistics are 
utilized to evaluate how closely a specific distribution with a given cumulative distribution function fits the corresponding 
empirical distribution for a given data set. The distribution having the better fit will be the one whose goodness-of-fit 
statistic is the smallest. The AIC, BIC, CAIC are given by  
 

                                         ( ̂)     

                                            ( ̂)      ( ) 
                                                 

                                          ( ̂)  
   

     
 

 

where  ( ̂) denotes the log-likelihood function evaluated at the maximum likelihood estimates for parameters  , q is the 

number of parameters, and n is the sample size.  
 
                  Table 1. MLEs for estimates for different distributions 

Distribution 
MLEs  

 ̂  ̂  ̂  ̂  ̂  ̂  ̂ 

IBL 0.4933 17.625 2.356 - - - - 

BTW - 0.2133 0.9999 0.9762 - 1.5266 0.3269 

BL 1.861 1.340 0.065 - - - - 

BE - 1.149 0.997 0.116 - - - 

Gamma - - - 7.9876 1.1725 - - 

Lindley 0.196 - - - - - - 

BEP - 8.6121 0.080 - 0.0508 0.3477 159831 

IB - 1.200 0.700 - - - - 

BP - - 0.080 - 0.0109 4.8049 100.500 

EP - 4.1518 0.080 - 0.4722 - - 

Pareto - - 0.080 - 0.1519 - - 

 
The maximum likelihood method is used for estimating the parameters of all the compared distributions and the parameter 
estimates are given in Tables 1. Further, all the aforementioned goodness-of-fit statistics are determined for each 
distribution and listed in Table 2. It can be observed from Table 2 that the IBL distribution has the smallest statistics. 
Accordingly, we can conclude that the IBL distribution represents the best fit among the compared distributions. 
                    

Table 2. Goodness-of-Fit Statistics for the remission times of bladder cancer data 

Distribution 
Measures 

-Log L AIC BIC CAIC K-S 

IBL 409.67   825.35 833.91 825.55 0.0381 

BTW 409.86 829.73 843.87 830.23 0.0399 

BL 412.80 831.60 840.16 831.79 0.0937 

BE 413.19 832.37 840.93 832.57 0.0652 

Gamma 413.37 830.74 836.44 830.83 0.0733 

Lindley 419.53 841.06 843.91 841.09 0.1087 

BEP 433.40 874.80 886.20 875.10 0.1427 

IB 468.08 940.15 945.86 940.25 0.3747 

BP 482.35 970.70 979.20 970.90 0.2231 

EP 494.10 992.20 997.90 992.30 0.2515 

Pareto 593.65 1189.30 1192.10 1189.30 0.3729 

 

Conclusion 

We propose a new distribution, so-called the Inverted Beta- Lindley (IBL) distribution, and study some of its general 
structural properties and statistical measures. This distribution has the support on the positive real line and it can be used 
to analyze lifetime data. The shapes and some properties of probability density and hazard functions are provided. The 
distribution exhibits a wide range of hazard shaped. The estimation of the model parameters is approached by method of 
moments and maximum likelihood. Moreover, the Fisher information matrix for interval estimation is studied for IBL 
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distribution. A real data on bladder cancer is used to illustrate and compare the potential of IBL distribution with other 
competing distributions showed that it has a superior performance among the compared distributions as evidenced by 
some goodness-of-fit tests. 
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