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ABSTRACT 

The problem of peristaltic transport of an incompressible non-Newtonian fluid in a tapered a symmetric channel through a 

porous medium is presented under long-wave length and low –Reynolds number assumptions, the fluid is considered to 

be Walters – B fluid and electrically conducting by a transverse magnetic field. The tapered  asymmetric channel in the 

flow induced by talking peristaltic wave imposed on the non-uniform boundary walls to possess different amplitudes and 

phases. Series solutions for stream function, axial velocity and pressure gradient are given using regular perturbation 

technique. Numerical computations have been performed for the pressure rise per wave length. The effect of the physical 

parameters of the problem on these distributions are discussed and illustrated graphically through a set of figure              
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1. INTRODUCTION 

Peristaltic transport is a form of material transport included by a progressive wave of contraction or expansion along the 

length of distensible tube mixing and transporting the fluid in the direction of the wave propagation. This kind of 

phenomenon is termed as peristaltic. It plays an indispensable role in transporting many physiological fluids in the body 

under various situations as urine transport from kidney to bladder, the movement of chyme in the gastrointestinal tracts, 

transport of spermatozoa in the ductus efferent's of the male reproductive  tract, movement of ovum in the fallopian tubes, 

swallowing of food through esophagus and the vasomation of small blood vessels many modern mechanical devices have 

been designed on the principle of peristaltic pumping to transport the fluids without internal moving parts, for example the 

blood pump in the heart-lung machine and peristaltic transport of naxious fluid in nuclear industry. The mechanism of 

peristaltic transport has attracted the attention of many investigators since its investigation by Latham [13], Burns and 

pareks[2], shapero et all.[22], Fung and yih [3], Takabatake and Ayukawa [25], Akram and Nedeem [1], mekheimer and 

Elkot [16], Mekheimor and al –arabi[15], mekheimer[14], Nadeamand akbar [19], Kothandapaniet al.[10], of peristaltic flow 

for different fluids have been reported under various conditions with reference to physiological and mechanical situations. 

Most of these investigations are confined to the peristaltic flow only in a symmetric channel or tube . consideration of wall 

properties in peristalsis is of special value in study of blood flow in arteries and veins, urine flow in the urethras and air flow 

in the lungs. Peristaltic motion in a complaint wall channel has also been investigated by some researchers. Rad- 

hakrishnamacharya and Srinivasulu [20] analyzed the influence of wall properties on peristaltic motion of Newtonian fluid 

with heat transfer. Peristaltic motion of micro polar fluid in circular cylindrical tubes with wall properties is discussed by 

muth et al [17], Hayat et al.[5, 6] examined the MHD peristaltic flow of Jeffery and Johnson –Segalman fluids with 

compliant walls.srinivas and kothandapani [23] analyzed the heat and mass transfer effects on MHD peristaltic flow of 

Newtonian fluid in a porous channel with compliant walls. Riaz et al.[21] investigated the peristaltic motion of prandtl fluid 

in rectangular duct with wall properties. Recently, peristaltic flow of burgers fluid in complaint walls channel was 

investigated by javed et al.[9]. Peristaltic flow with complaint walls and hall current was studied by gad [4]. Very recently, 

the combined influence of heat and mass transfer on the peristaltic motion of  pseudeplastic fluid with wall properties was 

analytically explored by hina et al.[7]. Slip effects on the peristaltic flow of eyring- powell fluid with wall properties were 

examined by hina [8]. Amongst the many suggested models, walters [26] has developed a physically accurate 
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mathematical model for the rhedogical equation of state of a viscoelastic fluid with short memory. This model has been 

Shawn to capture the characteristic of actual viscoelastic polymer solutions, hydrocarbons, paints and other chemical 

engineering fluids. The walters-B fluid model generates highly non-linear flow equations which have order higher than that 

of the Navier-stokes equations. It also in eorporates elastic properties of the fluid which are important in extensional 

behavior of polymers. Peristalsis of Walters-B fluid with wall properties has never been addressed previously, Thus 

margiam javed et al.[18] is undertaking to fill this void by incorporating velocity slip and temperature jump conditions. In the 

present paper, we investigated the peristaltic transport of walters-B fluid under the effect of magnetic field through a 

porous medium in a tapered a symmetric channel. Regular perturbation technique are used under long-wave length (wave 

number is small ) and law-Rynolds  assumptions. Series solutions for stream function, axial velocity and pressure gradient 

are given, numerical computations have been performed for pressure rise per wave length. The influence of the physical 

parameters of the problem are discussed and illustrated graphically. 

2.  MATHEMATICAL MODELS 

     Let us consider the MHD flow of  an incompressible and electrically conducting walters –B fluid through a porous 

medium of two –dimensional tapered a symmetric channel. We assume that infinite wave train traveling with velocity c 

along the non –uniform walls. We choose a rectangular coordinate system for the channel with X along the direction of 

wave propagation and parallel to the centre line and Y transverse to it. The wall of the tapered a symmetric channel are 

given in fig.(1) by the equations  

:

1 1

2 2

2
( , ) sin[ ( ) ]......  wall

2
( , ) sin[ ( )].......  wall                         ......(1)

H x t d m x a x ct lower

H x t d m x a x ct upper










     

   

                                             

Where 1 2,a a are the amplitudes of the waves,  is the wave length, 2d  is the width of the channel at the inlet, 

( 1)m m   is the non-uniform parameters, the phase difference   varies in the range 0    , 0  represents 

to symmetric channel in which waves are out of phase and when    the waves are in phase, and further 1 2, ,a a d

and  satisfies the condition :   

2 2 2

1 2 1 22 cos (2 )                                                                    .......(2)a a a a d   

The constitutive equations for Walters-B fluid are: 
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

      ......(6)

     

In which S is the Cauchy stress tensor, -PI is the spherical part of the stress due to constrain of in compressibility,  is the 

extra stress tensor, 0  is the coefficient of viscosity, e is the rate of strain tensor and
t




denotes the convicted 

differentiation of a tensor quantity in relation to the material motion  
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The governing equations of the continuity and momentum equations for two-dimensional case are: 

 

          0                                                                                                                                               .....(7)
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2 0( ) ( ) .                                    .....(8)
0

0       ( ) ( ) ( )                                                      ......(9)

    

P
S S B U UXX XY

kX X Y

V V V P
U V S S VXY Y Y

kt X Y Y X Y







  
    
  

     
      

     

   the stress components are given by

2 2 2
2

       4 2 [2 2( ) 4( ) 2 ( )]                       .....(10)
0 0 2
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        

 

in which  is the fluid density ,P is the pressure, ( , )U V are velocity components in the direction of the laboratory frame 

( , )X Y  ,  is the electrically conductivity and B0 is the constant magnetic field.  

We employ the following dimensionless variables in the governing equations of motion: 
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The stream function ( , )x y is defined by : ,u v
y x

  
 
 

 

 

Eq.(7) is satisfied automatically and Eqs.(8),(9),(10),(11) and (12) become: 
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Now, in the laboratory frame ( , )X Y  the flow is unsteady, However if treated it as steady flow in the wave frame (x, y), 

so the equations (13), (14), (15), (16) and (17) can be written as: 

2
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Where 
2 2 2

1 ( )N M k  ;   is the wave number, M is the Hartmann number, Re is the Reynolds number, k is kaba 

number ,Dr is dercy number . 

 Under the long wave length and low Reynolds number approximations, equations (18) and (19) can be written as : 
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2

1         0                                                                                 ...(23)
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p
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y




    






                                                     ...(24)

From 

equations (24) indicates that P is the independent of y, from equation (23)we have 

2           0                                                                                         ......(25)
1

S Nxyyy yy   

 Which equivalent to 

2 2
2

12 2
0                                                                                            .....(26)xyS N

y y

 
 

 
 

The appropriate boundary conditions in dimensions less form are : 

 

 

 

 

We note that h1(x, t) and h2(x ,t) represent the dimensionless form of the surfaces of peristaltic walls: 

  

2
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           1 sin(2 ( ) )                                                                       .....(28)

h mx b x t and

h mx a x t



 
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3.  METHOD OF SOLUTION  

     It is clear that the resulting equation of motion Eq.(26) is non linear. It seems to be impossible to obtain the general 

solution in closed form for orbiting values of all parameters a rising in this non linear equation. We seek the solution of the 

problem as a power series expansion in small parameter  . For perturbation solution, we expand , , xyF S and p as: 

 

 

 

 

 

Substitution of above equations into Eq.(23) and (26) and boundary conditions  Eq.(27) and collection of terms with 

respect to like powers of  yields the following systems: 
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3.1  System of order zero : 

4 2
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14 2

3
20 0 0
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3.2  System of order one 
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3.3   Solution for system of order (0)( ) 

1 1

0 2 1 2 2 3 4

            It is found that the solution of  equation (30) under the associated  boundary 

            condition (33) is given by

            ;                               
n y n y

n e a n e a a a y 
   

1
1 2 2

1

                                      .....(38)

2
           ( , )

2

N
where n n

N
 

1 2 3 4, , ,a a a a are constants can be determinates by using the boundary conditions in Eq.(33). 

In order to discuss the results quantitatively, we assume the instantaneous volume rate of the flow      F(x, t), periodic in (x-

t), (kothandapani and prakash [11], Kothandapani et al.[12], Srivastava et al,[24] ) as  

       ( , ) sin(2 ( ) ) sin(2 ( ))                                                .....(39)F x t b x t a x t                         

In which  is the time-average of the flow over one period of the wave and                   
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2
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                                                                                                                        .....(40)
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h

F udy     Using 

0 1( )F F o F   and then neglecting the terms greater than ( )o  

3.4  Solution for system of order (1)( ) 
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2 2 2
(33 5 10 2 2 2 (5 2 ) 2 ( 5 2 ))5 53 1 1 1 1 2 1 1 1 1 1

2
2 1( (2 )( 5 2 ) ( 33 5 1056 1 1 2 1 1 4 1

n y h n n y

h n
e h h n h n n y h n y n y h n n y

h h n n y h n y n y h n n y h n n y

h n
e h h n h n n y h h n

    

            

         

        

    ....(41)

2 2 2
2 251 1 1

2 2
2 (5 2 ) 2 ( 5 2 )) (13 2 2 (5 2 ))) )52 1 1 1 1 1 3 1 1 1 1

2 31 1 2 1(8( ( 2 ) (2 )) ) ...........
1 1 2 1 1 1 2 1

n y h n y n y

h n n y h n n y h n y n y h n n y k

h n h n
e h n h n e h n h n

  

        

      

 

2 cos(2 ( ) );
3

2 cos(2 ( ));
4

sin(2 ( )) sin(2 ( ) );5

2 cos(2 ( )) 2 cos(2 ( ) );
6

sin(2 ( )) sin(2 ( ) );                                             
0

h m a x t

h m b x t

h b x t a x t

h b x t a x t

F a x t b x t

where

  

 

  

    

   

    

  

    

    

                                      

 

1 2and ,h h  determinate are given by Eq.(28) and c[1], c[2], c[3], c[4] are constants can be determinates by using the 

boundary conditions in Eq.(37). The non- dimensional expression for the average rise in pressure p is given as follows: 

1 1

0 0

                                                                                                             .....(42)
p

p dxdt
x


 

 
 

4.1 Pumping characteristics  

       We plot the expression for p in Eq.(42) against  for various values of parameters of interest in Fig.(27). Numerical 

calculations for several values of Hartmann number (M), the phase difference ( ), the non- uniform parameter of the 

channel (m), the inverse of Darcy number (K) and lower walls ( &a b )have been carried out. The effect of these 

parameters on p have been evaluated numerically using mathematica and the results are presented graphically. In 

fig.(2), the effect of Hartmann number M on p are seen, observed that in the pumping  0p  and the co-pumping (

0p  )for the Walters-B fluid, an increase in M causes decreasing in the pumping increasing with an increase in M. in 

Fig.(3), the effect of phase difference  on p are seen, observed that an increase in   causes increasing in the co-
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pumping (  0p  ) and decreasing in the pumping  0p  . The effects of non-uniform parameter m as well as the 

amplitude of lower wall of channel a are plotted respectively in Figs.(4) and (5), it examined that an increase in m and a 

causes an increase in the pumping  0p   and decrease in the free pumping 0p   and co-pumping 0p  . The 

effects of amplitude of upper wall of channel  b and the inverse of Darcy number K on p are plotted respectively in 

Figs.(6) and (7), it noticed that an increase in band K causes an increase in the pumping  0p   and free pumping  

0p   and decrease in the co-pumping  0p  . 

4.2  Velocity distribution 

     Influences of geometric parameters on the velocity distribution have been illustrated in Fig.(8-14) these figures are 

scratched at the fixed values of x=0.3, t=0.5 . the change in values of m on the axial velocity u is shown in fig.(8), it can be 

found that the axial velocity u decrease with an increase in m at the centre of channel and after y=-0.5 at the lower wall of 

the channel but after y=+0.5 at the upper wall of channel the velocity u increase with an increase in m . Fig.(9) shows the 

influence of  on the axial velocity u, it observed that an increase in   causes an increase in u at the centre of channel 

and decreasing in u after y=-0.5 at the lower part of channel.Fig.(10) displays the effect of a on the axial velocity u, it 

examined that an increase in a causes an increase in u after y=-0.5 at the lower part of channel and decreasing in u at the 

centre of the channel .Fig.(11) shows the effect of  b on the axial velocity u, it observed that an increase in b causes 

decreasing in u at the centre of channel and upper wall of channel. The influence of M on the axial velocity u is shown in 

Fig.(12), it noticed that an increase in M causes decrease in u at the centre of channel which is the same behavior of 

effect of K on axial velocity u and it is platted in Fig.(13) and conversely behavior of effect of   on axial velocity u which is 

shown in Fig.(14). 

4.3 Trapping phenomenon   

     The phenomenon of trapping is another interesting topic in peristaltic transport. The  formation of an internally 

circulating bolus of fluid through closed stream lines is called trapping and this trapped bolus is pushed a head along with 

the peristaltic waves. The trapping for different values of m,  , a, b, M, K and   are shown in Figs.(15-21) at fixed values 

of( t=0.5 ). The stream lines for different values of m are shown in Fig.(15), it has been noticed that the bolus increasing in 

the lower and upper of the tapered channel with increasing m. the stream for different values of   are shown in fig.(16), it 

is examined that the size of bolus decreasing rapidly in the lower and upper part of channel with increasing of  . Effect of 

a are shown in fig.(17), it is noticed that the size of bolus increasing in the lower and upper part of channel with increasing 

of a. fig(18) shows the effects of b and it is observed that the bolus decrease in size with an increase in b. which is the 

same behavior of effect of M and plotted on fig.(19), figs.(20) and (21)shows the effects of k and   respectively and it is 

observed that an increase in k and  causes decreasing in size of bolus in the upper and lower part of channel 
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Fig.(4)  Effect of non-uniform parameter m on p    
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Fig.(6 ) Effect of amplitude of upper wall of channel b on

p 
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Fig.(8)  Effect of non –uniform parameter m on axial 

velocity u(y)  
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Fig.(5)  Effect of the amplitude of lower wall of channel 

a on  p  
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Fig.(7)  Effect of the inverse of Dercy number K on  p 
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Fig.(9) Effect of phase difference on the axial velocity 

on u(y) 
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Fig(10) Effect of amplitude of lower wall of         

channel    on axial velocity u(y) 
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Fig.(12) Effect of Hartmann number M on axial 

velocity u(y) 
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Fig.(14) Effect of the time average   on axial velocity 

u(y) 
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Fig.(11) Effect of amplitudes of upper wall channel on 

axial velocity u(y) 
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Fig(13) Effect of the inverse of the Dercy number K on 

axial velocity u(y). 
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Fig.(15)  Stream lines for 
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Fig.(16)  Stream lines for 
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Fig.(17)  Stream lines for 
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Fig.(18)  Stream lines for 
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Fig.(19)  Stream lines for 
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Fig.(21)  Stream lines for 
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Fig.(22)  Stream lines for

 

5.  CONCLUDING REMARKS 

In this paper, we investigated the peristaltic transport of Walters –B fluid through aporous medium in the tapered a 

symmetric channel under the influence of magnetic field, the channel a symmetry is produced by choosing the peristaltic 

waves train on the non- uniform walls to have different amplitudes and phases along-wave length and low Reynolds 

number approximations are adopted. A regular perturbation method is employed to obtain the expression for stream 

function, axial velocity and pressure gradient- numerical study has been conducted for average rise in pressure over a 

wave length. The effects of Hartmann number (M), the inverse of Darey number (k), wave amplitudes (a &b), channel 

width (m) and phase angle   on the pressure rise, axial velocity and stream lines are also investigated in detail. It found 

that : 

a b C 

a b 
c 
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1.    The pressure rise over a wave length p increase with an increase in m, a in the pumping  0p  while the 

situation is reversed in the free pumping 0p  and Co-pumping    0p   

2.    The pressure rise over a wave length p increase with an increase in b, k in the pumping 0p  and free pumping 

p o  while the situation is reversed in the Co-pumping 0p   

3.    The pressure rise over a wave length  p increase with an increase in M in the pumping 0p  while the situation 

is conversely in the pumping 0p   and Co-pumping 0p   

4.  the pressure rise over a wave length p increase with an increase in  in the Co-pumping   0p   and its 

conversely in the pumping  0p   

5.   the axial velocity u decreasing with an increase of m, b ,k and M . 

6.   the axial velocity u increasing with an increase of  , a  and   . 

7.   The size of the trapped bolus increase with an increase of m and a, while decrease with an increase of   , b, M,   

and k.   
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