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ABSTRACT

The objective of this paper is to study the optimality for stochastic non cooperative elliptic systems. A distributed control problem
for a stochastic elliptic systems with constraints on states and controls is studied. First, the existence and uniqueness of the state
process for these systems are proved. The necessary and sufficient conditions of optimality are derived for the Dirichlet and
Neumann problems.
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INTRODUCTION

Stochastic systems play an important role in mathematical models of phenomena in many fields of science, engineering, finance,
biology, epidemiology and economics. In view probability theory, state of a stochastic system is randomly determined. Recently,
Many researchers have been directed to the studies of optimal control of stochastic systems due to their last importance. They
deal with stochastic differential equations (SDEs) [6,16].

Zhou was one of the first scientists to have used stochastic partial differential equations (SPDEs). He developed the necessary

conditions of optimality (maximum principle) for a very strictly elliptic second order partial differential equations on a d
-dimensional space [15]. The theory of backward and forward partial differential equations (PDEs) has been developed quickly,
and it became a powerful tool in the study of PDEs. Moreover, backward and forward SPDEs appeared and was studied in many
literatures (see e.g. [1,3]). The optimality for SPDEs is discussed in [15]. There are difficulties in the discussion of the solution
methods of systems of forward and backward SPDEs. So, the unique method for the solution is the maximum principle.
Researchers used the same steps; they discussed the maximum principle to face the difficulties of investigating the solutions.

Our first interest in this work is to implement new strategies that give a full study of the stochastic control problems.
Firstly, we derive the optimality conditions. Secondly, we apply the easiest methods to simplify the technique of the stochastic
control problem. Finally, we develop the study of the stochastic optimal control without constraints on the stochastic systems and

without forward and backward SPDEs method. In this paper, we discuss the optimal control problem for 2 x 2 stochastic non
cooperative elliptic systems with Dirichlet and Neumann conditions. We give the unique solution for these systems (the state
process of the system). Then after, we formulate the control problem and proved the existence and uniqueness of the control.
Also, we present the set of equations and inequalities that characterizes the distributed control for these systems. Moreover, the

optimal control problem of the generalized N x N stochastic Neumann elliptic systems with constraints is studied. In all our
considered problems the control of distributed type with state constraints is discussed.

This paper is organized as follows: In section 1; we introduce the basic notations and some function spaces defined on R'.

Section 2 is devoted to study the optimal control for 2 x 2 stochastic elliptic systems with Dirichlet conditions. In section 3, we
also study the problem with Neumann conditions and we introduce the main results of this paper.

1. Notations

This section covers the basic definitions and notations, which are necessary to present our work. Let Gbea nonempty open set

in R", the function @ : G — R is said to have a compact support if there exists a compact subset K of G such that #(X) = 0
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VX e G\K.Let D(G) be the space of infinitely differentiable functions ¢ with compact support (space of test functions). The
space of distributions is denoted by D'(G), D(G) is dense in L?(G) and D(G) = L (G) < D'(G).

For a multi-index & = (¢, @, ..., @,,) € N, where ; are non negative integers and @ € D(G), we define

« d“P
DUP(X) = —— o (¥ X = (X0 X0 %)
OX, 1 O%,2..0X,"

n

n
Where| a |: Zi:lai' The partial derivative 0" of a distribution T is defined by

<0“T,®>=(-1)" < 0“®, T >,® € D(G),T e D'(G).

Let (Q2,F, P) be a probability space, where Qis a sample space, Fis an o -algebra and P is a probability measure. We
introduce

L?(Q,F, P;G) ={u:GxQ — R|uismeasurableand '[QPuPzdp < oo},

L2(Q,F,P;G)x L*(Q,F,P;G) - R, defined as

with inner product ('")LZ(Q F.P:G)

(u,v) = (| ([ ,Vu(x) vv(x) dx)dp)

L2(QF.P;G)

The Sobolev space of order M [4], denoted by H™ (Q, F, P; G), is defined by

H™(Q.F, P;:G) ={v e LX(Q.F, P;G),a—r\: e L2(Q,F, P:G),1<i <n},
X!

with respect to the inner product

<f,g> :Z<D“f,D“g>

L2(QF.PG)’
leel<m

HM(QF,P;G)

ov
where 8_ are the derivative in the sense of distribution.
X.

An importance subspace of H™ (Q,F, P; G)is given by

HI(Q.F,P:G) ={v e X(QF, P;G),% —0]alcm-1}.
X

The dual space of Hj' (€, F, P;G)is denoted by H " (Q,F, P; G), thus we have the chain;
H(Q,F,P;G) c L*(Q,F,P;G) c H "(Q,F,P;G).

Let H be a Hilbert space. The bilinear forma : H x H — Ris said to be coercive if and only if there exists a constant C > 0
such thata(u,u) > cPuP?,vu € H.

LetV be a Hilbert space onR andV ' be its dual space. The Lax- Milgram lemma [12] states: if the bilinear form a(U, V) satisfies
the continuity and coerciveness conditions for U,V €V and the linear form f €V’ satisfies the continuity condition for the
system AU = f with model A, then there exists a unique solution U for the system AU = f such thata(u,v) = f (V).
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2.2x2 Stochastic Elliptic Systems with Constraints and Dirichlet Conditions

In this section, we study the optimal control problem for non cooperative 2 x 2 stochastic elliptic systems with Dirichlet Condition:
—Au, () =W, (x) —au,(x) +bu,(x) xeG,

—Au,(x) =W, (x)—bu,(x)—au,(x) xeG, (2.1)

u,(x) =0,u,(x)=0 on oG,
with constraints
OU, (X)=
——} =t[u,(x on
{ v, ¥ =tu ()] y
=0 on y
(2.2)
[_auk(x)]:() on y
oV,
) Z—auk(x) cos(v,x) k=1,2,
N, = o

where @,D €R" and G, and G, are two bounded, continous and strictly domains in R" such that Glrpz = (. Here,

G= GlLﬁZ with boundary 0G = (8G1LJ8G2)\]/,}/ = 8G1WG2 # ¢, COS(V, X;) = i th direction cosine ofV, V being

the normal aty, [u]=u™ —u~, whereu”™ ={u}" = u(X) under X € 8G2W, u” ={u} =u(X) underxe aGIW, and
0<t<t(x) <v,t eC(y),v isaconstant.(2.3)

While u(X) = (U, (X), U, (X)) € H3(Q,F, P;G) is a state process and W (X) = (W, (X),W, (X)) is a brownian motion

(wiener process). In the following subsection, we present the existence and uniqueness of (2.1).

2.1 Existence and Unigueness for Solution

In this subsection, we study the existence and uniqueness of solution for (2.1), (2.2). Since
Hi(Q.F,P;G) c L*(QF,P;G) c H(Q,F,P;G),
then we have chain

[Ho(QF,P;G)F c[L(QF P;G) c[H(Q.F P;G)I".

We define the following bilinear form on the sobolev space [H:(Q,F, P;G)T?,

6349 |Page council for Innovative Research
July 2016 www.cirworld.com



Volume 12 Number 06
Journal of Advances in Mathematics

b(u, @) = E([_(~Au, (x) @, (X) +au, (x) @, (X) ~bu, (X)D; (x))dx)
+E([ (=AU, (X) @, (X) +bu, ()P, (X) +au, (X) @, (X)) dx)

+E( Lt[ul(x)] [D; ()] +tu, ()] [P, (x)]dy), (2.4)

the linear form is given by
L(®) = E([ W, (x) @,() +W, ()@, (x) dx)(2.5)

wherer(X) andWZ(X) are the components of the wiener process. By Lax-Milgram lemma, we prove the following theorem.

Theorem 2.1. The bilinear form (2.4) satisfies the stochastic coerciveness condition and then there exists a unique solution
U e[HL(Q,F,P;G)]? of system (2.1), conversely, if there exists a unique solution U € [HZ(Q,F, P;G)J such that
b(u, ®) = L(D), then we get the system (2.1).

Proof. The bilinear form (2.4) can be written as
b(u, ®) = E(IG(—Aul(X) @, (x) +au, (x) @, (x) —bu, (x)®, (x))dx)
+ E(IG(—AUZ (X) @, (x) +au, (x) @, (x) +bu, (x) P,(x)) dx)

e E(L(t[ul(x)] [D; ()] +t[u, ()] [P, (x)]) dy)

Applying Green’s formula, gives
b(u,u) = E(L(l VU, (x) [ +a(u, (x))* ~bu, (x) uy (X)) dx)
+E( Vu,(X) |? +bu, () u, (x) +a(u,(x))*)
+ E(L(t[Ul(X)]2 +tu, (x)1*) dy)

> 2 2
> PulP(H%(sz,F,P;G»2 % PUZP(H%(Q,F,P;G»2

Therefore,

b(u,u)> cPuP[ (StochasticEllipticity) (2.6)

Hy(QF.PG)2’

where C = CONst and U = (Ul,uz).Since the bilinear form satisfies the continuity condition and the linear form is also
continuous on [HJ(Q,F,P;G)°, then by Lax-Milgram lemma, there exists a unique
u = (u,,u,) e[Hi(Q,F, P;G)J?, suchthat b(u, ®) = L(P), VD € [H(Q,F, P;G). Conversely,
b(u, ®) = L(P), VD e [H,(Q,F, P;G)]?andu = (u,,u,) e [Hs (Q,F, P;G)J’, we have

solution

when

E(L(Wl(x) V@, (x) +auy (x) @, (x) —bu, (x)®, (X)) dx)

+ E(_[G(Vu2 (X) VD, (x) +bu, ®,(x)+au,(x) P,(x)) dx)
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FE(] (tu, (010, 01+ tu, (][, (x)]) dy)
+E([_ (F (U, (), ,00)+ H (U, (x), @, (x)))déG)

B0 g, (94 200
EYA oV,

= E(JG(Wl(X) D, (X) + W, (X) @, (x)) dx),

([ ( , () d)

F (U, (%), @,(x)) = H (U, (x), @,(x)) = 0

(In Dirichlet problem u(x) = O.) By comparison of two sides, we get the system (2.1), with constraints (2.2). This completes the
proof. W
Now, we formulate the control problem with adding the control and we determine the cost functional.

2.2 Formulation of the Optimal Control Problem

Here, we formulate the problem and establish the necessary and sufficient conditions for the optimal control of distributed type.
The space [L (Q,F, P; G)J’ being the space of controls. For a control Y = (Y, Y,) € [L*(€,F, P; G)]?, the state process

of the systemU = {ul(y), Uz(y)}is given by the solution of the following system:

—Au, (y) +au,(y) —bu,(y) =W, +y, in G

u(y)=0,u,(y)=0 on oG (2.7)

—Au,(y)+bu,(y) +au,(y) =W, +y, in G,
with conditions (2.2). The observation equation is given by ;((y) = {;(l(y), X (Y)}=u(y), the cost functional is given by:
C(y) = E(J () = 20)* + Uy () = 220))b0) + [ (L (M (¥} +¥2)) cx) dp, (2.8)

where ¥4 ={ ¥4 XoatiN [L*(Q,F,P;G)J.
Then, the control problem is defined by:

yeYy suchthat

C(z)=infC(y) VzeY,,,

where Y, is a closed convex subset from [L* (Q,F, P; G)J*.

Since the cost functional (2.8) can be written as:

C() = E( (W (y) 1 0) + (U (0) - 116)))X)
(1, (0) =1, (0) + (U, 0) = 224))")X)
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+ jQ( LM (22 +22) dx) dp,
where
Iy, 2) = E([_((4(y) - (0))° +(,(2) ~ 1, (0)*)dX) + [ [ (M (2] +23)) dx dp, (2.9)
M > 0 is a positive constant, then

L(z) = E(IG(—Ul (0)+ 214 ) (Uy (1) =y (0)) + (=u, (0) + 24 )(u, (1) —u,(0)) dx), (2.10)

andT1(y, ) is a stochatic coercive on [L* (€, F, P; G)]?. Since L(z) is continuous on[L*(Q,F, P; G)J?, then there exists

a unique optimal control from the general theory in [8]. Moreover, we have the following theorem which gives the characterization
of the optimal control.

Theorem 2.2. ifthe state u(y) is given by (2.1), (2.2) and if the cost functional is given by (2.8), then there exists a unique
optimal control Y = (Y;, Y,) € Y,4such that C(y) < C(z) Vz €Y,,; Moreover, it is characterized by:

—Ah(y)+ah(y)+bh,(y)=u(Y)- s InG,
h,(y)=0,h,(y)=0 on 6G

—Ah, (y) =bh (y) +ah,(y) =u,(y) = xoe  InGy,

with constraints

ahl(y) R (y)} =t[h,(y)] ony
[WY)] [8';\/‘”] 0 ony
[h,(y)]=[h,(y)] =0 on 7,

where h(y) = {hl(y), h2 (y)}is the adjoint state process.

Proof. since C(y)is differentiable and Y, is bounded, then the optimal control Z is characterized (see e.g [8,9]). Using
equations (2.9), (2.10), we get

I(y,z—y)>L(z-vy),(2.11)

and
I(y,z—y)-L(z—y)
= E(L((Ul(Y) = U, (0))((u,(z - y) =, (0))))dx)
+ E(L((“z (¥) —u,(0))((u,(z - y) —u,(0))))dx)
—E(L(((Ul(o) = 2a)((U (2= y) —u,(0)))))dx)
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+E([(((000) = 226 (U, (2= ¥) —u, (0)))))dX)
+ [ ([ My, (2 - y) + My, (2, - y,) dx)dp

= [ My, (2= y.0) + My, (2, - v,) dX)dp
+E([ (0 (y) ~ 20)(U(2) Uy (y)) )

+E([ (U (¥) — 226) (U, (2) — U () X) 2 O,

with (B"h(y),u(y)) = (h(y), Bu(y)), and B is defined by:

B®=B{u,(y),u,(¥)}= (-Au,(y) +au,(y) —bu, (y),—Au,(y) +bu, (y) +au, (y)).

Applying the derivative in the sense of distribution, we get
* T Gl
B'h(y) + M "h(y) =u(y) - x.

where B=—A,M =g; and j =1,2. so,
I(y,z—-y)-L(z-y)
= ([, ((ah, —bh,)(u,(2) -y () + (bh, +ah, (U, (2) - U, (¥)))dX)
+ (L (My;, 2, y.) + (My,, 2, - y,)dX)dp

+E(]_(h,(~Au, (2) + Auy (¥)) + (M) (AU, (2) + Au, (¥)))dx) > 0

Hence, from (2.112) we obtain
E(J,((h, +My,)(z — 1) + (hy + My, )(z, ~ ¥,))dX) >0 w
2.3 NxN Stochastic Elliptic Systems
In this section, we generalize the problem (2.1).

Bu,(x) =—=Nu,(x)+W.(x) inG,

(2.12)
u,(x)=0 on oG,
with constraints
[u;()]=0 ony
ou. (X), .
{L}‘ = t[u, (x)] ony (2.13)
oV,
=0 ony,i=1.2,..,n,
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82
where G is an open subset of R" with smooth boundary, B is an N x N diagonal matrix of Laplace operators (—A = Zin_ly),
=1 X,
and N is an N X Nmatrix with coefficients defined by:
-1 i<j,
1 i
The model B of the system (2.12) is given by

Bu = B{U,, Uy, Uy, U} ={=AU, + D 8, U5 —AU + > 8 U T
=L =

On the Sobolev space
[Ho(Q.F, P;G)I" =TT}, (Hs (. F, P;G)",

we define the bilinear and linear forms:

b(u, ®) = Z”:E(IG((—Aui) ®, dx+ [ (t[u][P;]) d;/)+zn:E( [ 8 @ u; dx),

i,j=1
L(®) = > E( LWi @, dx), (2.14)
i=1
respectively. From (2.3) and (2.14), we have

b(u,u) = iE(LWui E o|x+jy(t[ui]2)o|7+i:j6|uj 7 dx)

z;E(jqui P o|x+ZjG|uj ? dx)
i= i=j

ie.,b(U,u) is stochastic coercive on [H,(€,F, P;G)]". Then, by Lax-Milgram lemma, there exists a unique solution
u=4{u,U,,....,u.}e[H: (Q,F, P;G)]" such thatb(u, ®) = L(D), which proves the existence of the state process for the
system (2.10)-(2.12). So, we can formulate the corresponding control problem: The space (L?(Q,F, P;G))"is the space of
controls. For a given control Y = (y;)1, € (L*(Q,F, P;G))", the state process U(Y) = {U, (y)}, of the system is given by

-Au;(y) = _Zaijui (Y)+W;+y; inG;
=t

u(y)=0 on oG,

wherei =1,2,..., N, with constraints (2.11). The cost functional is given by:

CO) =EQ (@)~ 502 + [ (], (M (1)?)dx) o,
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TI(y,2) = EQY[ (4 ()~ 4 O)(6(D) -6, @) + Y [ (. (M (u))ex) d,

L(2) = EQY[ (-4,(0) + ) (2) - O},

where 4 ={gs Zag s ZnatIN [L(QF, P;G)T".

In this case, the necessary and sufficient condition for Y to be an optimal control is that the following equations and
inequalities be satisfied.

Bh(y) + NTh(y) = u(y) - 74 inG
h(y)=0 on oG

oh (¥)=
{ oV

¥ =tih(y)] [ah\fy)] 0 ony,

A

where N " is the transpose of N with variational inequality

iE(IG(hj +My;)(z; - y;)dx) =0, Where v z cos(V, X,) aai)fy) _
i1 )

A k

Remark 2.1

h(z
1- If constraints are absent, i.e. when Y 4 =Y, thenh(z) + My = 0,z; # y;ory = _he the differential problem of finding

the vector-function satisfies the the following relations.

For the state process

h(@) _

Bu+ Nu+—+~ inG

u=0 on oG

ou(Y)y: _ ou(y), _
{6—\/A} =tu(y)l.[ N, =0 ony.

For the adjoint state process
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Bh(y)+NTh(y)-u(y)=-z, inG
h(y)=0 on oG

oh(y

S

)y :t[h<y)],[aah72¥)] =0 on 7

2- We can find the last relations when N = 2, and get (2 x 2) stochastic elliptic systems with constraints and distributed
Dirichlet conditions.

3 2x2 Neumann Stochastic Elliptic Systems with Constraints

In this section, we study the optimal control problem for non cooperative 2 x 2 stochastic elliptic system with Neumann
conditions.

—Au, (x) =W, (x) —au,(x) +bu,(x) iInG,

ouy(x) _ - 0u,(x) _
=0, =0,
v, EYA

onoG (3.1)

Au, (x) =W, (X)—bu,(x)—au,(x) inG,,
under constraints

OU, (X)s _ ou, (X)4 _
{8—\/A} T t[Ul(X)],[W] =0 ony

{

OU, (X)4+ _ ou, (X), _
N, F =tu, (LI N, 1=0 ony,

1
where g € H2(Q,F,P;G), k =1,2,u ={u,,u,}.

3.1 Existence and Uniqueness of Solution

In this subsection, we study the existence and uniqueness of solutions for 2 X 2 non cooperative stochastic systems governed by
Neumann problems. Since

[Ho(QF, PG c[H'(QF,P;G)T,

then

2 2
(MY @F Pon? = ke per’

which proves the coerciveness of bilinear form a(u, u) on[H*(Q,F, P; G)J?

b(u,u) > cPuP? 5 (Stochasticcoerciveness) (3.2)
(Hi(QF.P;G)
Theorem 3.1.
Assume that (3.2) holds, and then there exists a unique solution U = {Ul, UZ} of system (3.1).
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Proof. since the bilinear form b(uU, W) is continuous and stochastic coercive on[H*(Q,F, P;G)]?, then by Lax Milgram
lemma there exist a unique solution of:

b(u,¥) = L(¥), Vu e[H (), F,P;G)T%, (3.3)
where L(\P') is continuous linear form defined on [H*(Q,F, P; G)]’ by using Green’s formula, we obtain (3.1):
L('Y) = E(J-G(Vvl ¥y +W, ') dx + J;G(gl ¥ +0,',) doG),
then (3.3) is equivalent to

b(u, W) = E([ (Vu, V¥, +Vu, V¥, +au, W, —bu,'¥; +bu, W, +au, \¥,) dx)

FE(] QIR+ 02D d + [ (e, 220 ) o)

= E(L(\Nl ) +W, W, ) dx + LG(gl ¥, +9,¥,) doG)

Hence (3.3) is equivalent to (3.1) and there exists a unique solution of (3.1).

3.2 Formulation of the Optimal Control Problem with Neumann Conditions

Here, we formulate the problem and establish necessary and sufficient conditions for the optimal control of distributed type. The

space[L*(Q,F, P; G)]%is the space of controls. For a control Y € [L*(Q,F, P;G)]?, the state u(y) of the system is given
by the solution of

_Aul(y) :_aul(y)+bu2(y)+W1(Y)+y1 in Gl

ou,(y) _ - ouy(y) _
=q,, = on 0G
v, g, N, g,
(3.4)

U (Y)s U (Y)y_ny
{W} =t[u, (V)L v, ]=0k=12 ony

Au,(y) = =bu,(y) —au,(y) +W,(y)+y, inG,.

The observation is given by () = u(Y), the cost functional is given again by (3.4). The optimal control is characterize by the
following theorem:

Theorem 3.2. Assume that (3.2) holds, if the cost functional is given by (2.7), then there exists an optimal control
y = (Y., Y,) €[L*(Q,F, P;G)J. Moreover, it is characterized by the following equations and inequalities:
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—Ah,(y) = —ah,(y) —bh,(y)+ M 6;1\/(3/) -2y NG,

A
M) =, Mely) g on 8G
oV, oV,
ou .
Ah,(y) = by (y) —ah, (y) + M 2 - ing,
oV,
Under constraints
oh (Y)ys _ oh (y), _ _
— 271 =t[h J—=221=0o0on y,k=1,2.
{ YA ¥ =th.(Y)LI N 1 /4

Together with (3.4), where p(U) is the adjoint state
ECJ(NYy (2 = ¥2) + N, (2, = ¥) + (2= ¥) + 1y (2, - ¥,))dx) 2 0. (3.5)

3.3 Generalization NxN for Stochastic Neumann Elliptic Systems with Constraints

Here, we generalize the discussion to N X N stochastic elliptic systems with Neumann condition

AU =-MU +W inG
aU(X):g on oG
oV,

OU (X)y« _ oU (x); _
—F =t[U(X)],[——=]=0 :
{ N, [U()LI v, | ony

where G is an open subset of R" with smooth boundary, A is an N xN diagonal matrix of Laplace operator

62
(-A= E "~ ), Misan NxN matrix with coefficients defined by:
RO

-1 i<,

1 i>].
In this case, the bilinear and linear forms are given by:

b(u,¥) = iE( JL(Au) ¥, dx+ [ (tu ][] dy)

L (u
+.ZE(J.GaU. ¥y, dx+IaGa;'T()Ti doG)
i,j=1 A
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L(P) = iE( LWi W dx+ LGgi ¥ doG)

The cost functional is given by:
C(Y) =EQ [ (U (¥)— z)?d)+ D[ [ M(y,)*dxdp,
i=1 i=1

where ¥y ={ s Zog v XnadiN [L2(Q,F, P;G)]". In this case the necessary and sufficient condition for y to be an
optimal control is that the following equations and inequalities be satisfied.

oh(y

Ah(y)+M 'h(y) =M N -y InG
ah(ti) =0 on oG
oV,
oh(U)y: _ oh ()4 _
{5VZ ¥ =th(y)LI YR =0 ony,

oh

where% = Z:kzlcos(v, X,) a‘)fky) , ZL E(_[G((hj +My,)(z;—Y;))dx) =0

A

Remark 3.1 1- If constraints are absent, i.e. whenY,;, =Y, thenh(y)+ Ny =0ory = — hf\IY)

the differential problem of
finding the vector-function satisfies the following relations:

For the state process

AU + MU =W inG
—aU(y)+w:g on oG
oV, N
U (Y)q: _ ou(y),_
{ . ¥ =tlu(y)LL YA 1=0 ony.

For the adjoint state process

A(y) +MTh(y) M) — G

EYN ‘
nGy) - g on 6G
N,
OOy i1 [ P20 oy,

v, oV,
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2- We can find the last relations when N = 2, and get 2 x 2 stochastic elliptic systems with constraints and distributed

Neumann conditions.
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