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ABSTRACT 

The objective of this paper is to study the optimality for stochastic non cooperative elliptic systems. A distributed control problem 
for a stochastic elliptic systems with constraints on states and controls is studied. First, the existence and uniqueness of the state 
process for these systems are proved. The necessary and sufficient conditions of optimality are derived for the Dirichlet and 
Neumann problems.   

SUBJECT CLASSIFICATION: 35J47, 60H40, 93E20.  
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INTRODUCTION 

Stochastic systems play an important role in mathematical models of phenomena in many fields of science, engineering, finance, 
biology, epidemiology and economics. In view probability theory, state of a stochastic system is randomly determined. Recently, 
Many researchers have been directed to the studies of optimal control of stochastic systems due to their last importance. They 
deal with stochastic differential equations (SDEs) [6,16]. 

Zhou was one of the first scientists to have used stochastic partial differential equations (SPDEs). He developed the necessary 

conditions of optimality (maximum principle) for a very strictly elliptic second order partial differential equations on a d
-dimensional space [15]. The theory of backward and forward partial differential equations (PDEs) has been developed quickly, 
and it became a powerful tool in the study of PDEs. Moreover, backward and forward SPDEs appeared and was studied in many 
literatures (see e.g. [1,3]). The optimality for SPDEs is discussed in [15]. There are difficulties in the discussion of the solution 
methods of systems of forward and backward SPDEs. So, the unique method for the solution is the maximum principle. 
Researchers used the same steps; they discussed the maximum principle to face the difficulties of investigating the solutions. 

Our first interest in this work is to implement new strategies that give a full study of the stochastic control problems. 
Firstly, we derive the optimality conditions. Secondly, we apply the easiest methods to simplify the technique of the stochastic 
control problem. Finally, we develop the study of the stochastic optimal control without constraints on the stochastic systems and 

without forward and backward SPDEs method. In this paper, we discuss the optimal control problem for 22 stochastic non 
cooperative elliptic systems with Dirichlet and Neumann conditions. We give the unique solution for these systems (the state 
process of the system). Then after, we formulate the control problem and proved the existence and uniqueness of the control. 
Also, we present the set of equations and inequalities that characterizes the distributed control for these systems. Moreover, the 

optimal control problem of the generalized NN  stochastic Neumann elliptic systems with constraints is studied. In all our 

considered problems the control of distributed type with state constraints is discussed. 

This paper is organized as follows: In section 1; we introduce the basic notations and some function spaces defined on .1R  

Section 2 is devoted to study the optimal control for 22 stochastic elliptic systems with Dirichlet conditions. In section 3, we 

also study the problem with Neumann conditions and we introduce the main results of this paper. 

1. Notations  

This section covers the basic definitions and notations, which are necessary to present our work. Let G be a nonempty open set 

in ,nR the function RG: is said to have a compact support if there exists a compact subset K ofG such that 0=)(x
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.\ KGx Let )(GD be the space of infinitely differentiable functions with compact support (space of test functions). The 

space of distributions is denoted by )(),( GDGD is dense in )(2 GL and ).()()( GDGLGD p   

For a multi-index ,),...,,(= 21 Nn where i are non negative integers and ),(GD  we define  
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   The partial derivative T|| of a distributionT is defined by  
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Let ),,( PF be a probability space, where is a sample space,F is an -algebra and P  is a probability measure. We 

introduce  
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The Sobolev space of order m [4], denoted by ),;,,( GPFH m  is defined by 
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are the derivative in the sense of distribution. 

An importance subspace of );,,( GPH m F is given by  
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The dual space of );,,(0 GPH m F is denoted by ),;,,( GPH m F
thus we have the chain; 
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0 GPHGPLGPH mm FFF  
 

Let H be a Hilbert space. The bilinear form RHHa : is said to be coercive if and only if there exists a constant 0>c

such that .,),( 2 Huucuua  PP  

LetV be a Hilbert space onR andV be its dual space. The Lax- Milgram lemma [12] states: if the bilinear form ),( vua satisfies 

the continuity and coerciveness conditions for Vvu , and the linear form Vf  satisfies the continuity condition for the 

system fAu = with model ,A then there exists a unique solution u for the system fAu = such that ).(=),( vfvua  
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2. 22  Stochastic Elliptic Systems with Constraints and Dirichlet Conditions 

In this section, we study the optimal control problem for non cooperative 22 stochastic elliptic systems with Dirichlet Condition: 
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where
Rba, and 1G and 2G are two bounded, continous and strictly domains in

nR such that .=21 GG Here,

21= GGG  with boundary ,=,\)(= 2121   GGGGG  ixv i =),(cos th direction cosine of ,v v being 

the normal at , ,=][  uuu where )(=}{= xuuu 
under )(=}{= ,2 xuuuGx    under ,1 Gx  and 

 (2.3) t.isaconstan   ),( ,)(0  Ctxtt   

While );,,())(),((=)( 1

021 GPHxuxuxu F is a state process and ))(),((=)( 21 xWxWxW is a brownian motion 

(wiener process). In the following subsection, we present the existence and uniqueness of (2.1).  

2.1 Existence and Uniqueness for Solution  

In this subsection, we study the existence and uniqueness of solution for (2.1), (2.2). Since  

 ),;,,();,,();,,( 121

0 GPHGPLGPH FFF  
 

then we have chain 

 .)];,,([)];,,([)];,,([ 212221

0 GPHGPLGPH FFF  
 

We define the following bilinear form on the sobolev space ,)];,,([ 21

0 GPH F   
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the linear form is given by  
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where )(1 xW and )(2 xW  are the components of the wiener process. By Lax-Milgram lemma, we prove the following theorem. 

Theorem 2.1. The bilinear form (2.4) satisfies the stochastic coerciveness condition and then there exists a unique solution
21

0 )];,,([ GPHu F of system (2.1), conversely, if there exists a unique solution
21

0 )];,,([ GPHu F such that 

),(=),(  Lub then we get the system (2.1). 

Proof. The bilinear form (2.4) can be written as  
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where const=c and ).,(= 21 uuu Since the bilinear form satisfies the continuity condition and the linear form is also 

continuous on ,)];,,([ 21

0 GPH F then by Lax-Milgram lemma, there exists a unique solution
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(In Dirichlet problem 0.)=)(xu By comparison of two sides, we get the system (2.1), with constraints (2.2). This completes the 

proof.                                                                                                      W  

Now, we formulate the control problem with adding the control and we determine the cost functional.  

2.2 Formulation of the Optimal Control Problem 

Here, we formulate the problem and establish the necessary and sufficient conditions for the optimal control of distributed type. 

The space
22 )];,,([ GPL F being the space of controls. For a control ,)];,,([),(= 22

21 GPLyyy F the state process 

of the system )}(),({= 21 yuyuu is given by the solution of the following system: 
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with conditions (2.2). The observation equation is given by ),()}(),({=)( 21 yuyyy  the cost functional is given by:  
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where adY is a closed convex subset from
22 )];,,([ GPL F . 

Since the cost functional (2.8) can be written as:  
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and ),( yy is a stochatic coercive on .)];,,([ 22 GPL F Since )(zL is continuous on ,)];,,([ 22 GPL F  then there exists 

a unique optimal control from the general theory in [8]. Moreover, we have the following theorem which gives the characterization 
of the optimal control. 

Theorem 2.2. If the state )(yu is given by (2.1), (2.2) and if the cost functional is given by (2.8), then there exists a unique 

optimal control adYyyy ),(= 21 such that adYzzCyC   )()( ; Moreover, it is characterized by: 
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with constraints  
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where )}(),({=)( 21 yhyhyh is the adjoint state process. 

Proof. Since )(yC is differentiable and adY is bounded, then the optimal control z is characterized (see e.g [8,9]). Using 

equations (2.9), (2.10), we get  
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2.3 NN   Stochastic Elliptic Systems 

In this section, we generalize the problem (2.1).  
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   , )))(((()))((((=)( 2

1=

2

1=

dpdxyMdxyuyC i
G

n

i

idi
G

n

i
 

 E  



                            I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 6  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6355 | P a g e                  c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
J u l y  2 0 1 6                           w w w . c i r w o r l d . c o m  
 

where  

 , )))((()(0))))((0))()((((=),( 2

1=1=

dpdxuMdxuzuuyuzy i
G

n

i

iiii
G

n

i
 

 E  

 ),(0))))()((0)(((=)(
1=

dxuzuuzL iiidi
G

n

i

 E  

where .)];,,([ in },...,,{= 2

21

n

ndddd GPL F  

In this case, the necessary and sufficient condition for y to be an optimal control is that the following equations and 

inequalities be satisfied.  
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where
TN is the transpose of N with variational inequality  
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Remark 2.1  

1- If constraints are absent, i.e. when ,= YYad then jj yzMyzh  0,=)( or
M

zh
y

)(
=  the differential problem of finding 

the vector-function satisfies the the following relations. 

For the state process  

   

. on0=]
)(

[)],([=}
)(

{

 on0=

 in=
)(




























 
AA V

yu
yut

V

yu

Gu

GW
M

zh
NuBu

 

For the adjoint state process  
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   2- We can find the last relations when 2,=N and get ( 22 ) stochastic elliptic systems with constraints and distributed 

Dirichlet conditions.                                                                                 

3 22  Neumann Stochastic Elliptic Systems with Constraints  

In this section, we study the optimal control problem for non cooperative 22 stochastic elliptic system with Neumann 

conditions.  
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under constraints  
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where }.,{= 1,2,= ),;,,( 21
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3.1 Existence and Uniqueness of Solution  

In this subsection, we study the existence and uniqueness of solutions for 22 non cooperative stochastic systems governed by 
Neumann problems. Since  
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                                                                            Theorem 3.1. 

Assume that (3.2) holds, and then there exists a unique solution },{= 21 uuu of system (3.1). 



                            I S S N  2 3 4 7 - 1 9 2 1  
V o l u m e  1 2  N u m b e r  0 6  

J o u r n a l  o f  A d v a n c e s  i n  M a t h e m a t i c s  

6357 | P a g e                  c o u n c i l  f o r  I n n o v a t i v e  R e s e a r c h  
J u l y  2 0 1 6                           w w w . c i r w o r l d . c o m  
 

Proof. Since the bilinear form ),( ub is continuous and stochastic coercive on ,)];,,([ 21 GPH F  then by Lax Milgram 

lemma there exist a unique solution of:  

 (3.3) ,)];,,([),(=),( 21 GPFHuLub   

where )(L is continuous linear form defined on 
21 )];,,([ GPH F by using Green’s formula, we obtain (3.1):  
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then (3.3) is equivalent to  
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 Hence (3.3) is equivalent to (3.1) and there exists a unique solution of (3.1).                                                                                 

3.2 Formulation of the Optimal Control Problem with Neumann Conditions  

Here, we formulate the problem and establish necessary and sufficient conditions for the optimal control of distributed type. The 

space
22 )];,,([ GPL F is the space of controls. For a control ,)];,,([ 22 GPLy F the state )(yu of the system is given 

by the solution of  
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The observation is given by ),(=)( yuy the cost functional is given again by (3.4). The optimal control is characterize by the 

following theorem: 

Theorem 3.2. Assume that (3.2) holds, if the cost functional is given by (2.7), then there exists an optimal control

.)];,,([),(= 22

21 GPLyyy F Moreover, it is characterized by the following equations and inequalities: 
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Under constraints  
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Together with (3.4), where )(up is the adjoint state  
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3.3 Generalization NN   for Stochastic Neumann Elliptic Systems with Constraints  

Here, we generalize the discussion to NN  stochastic elliptic systems with Neumann condition  
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where G is an open subset of
nR with smooth boundary, A is an NN  diagonal matrix of Laplace operator 
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  M is an NN   matrix with coefficients defined by:  
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In this case, the bilinear and linear forms are given by:  
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The cost functional is given by:  
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where .)];,,([ in },...,,{= 2

21

n

ndddd GPL F  In this case the necessary and sufficient condition for y to be an 

optimal control is that the following equations and inequalities be satisfied.  
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Remark 3.1 1- If constraints are absent, i.e. when ,= YYad then 0=)( Nyyh  or
N

yh
y

)(
=  the differential problem of 

finding the vector-function satisfies the following relations: 

For the state process  
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For the adjoint state process  
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   2- We can find the last relations when 2,=N and get 22 stochastic elliptic systems with constraints and distributed 

Neumann conditions. 
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