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ABSTRACT  

In this paper, a fractional order nonlinear dynamic model of involving three person is introduced. The proposed model 
describes the dynamic behavior of an interrelation of three person under different structures. Stability analysis of the 
fractional-order nonlinear dynamic model of involving three person is studied using the fractional Routh-Hurwitz criteria. By 
using stability analysis on fractional order system, we obtain sufficient condition on the parameters for the locally 
asymptotically stable of equilibrium points. Finally, our results are validated by numerical simulations. 
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1  Introduction 

Mathematical models are used not only in the natural sciences (e.g. astronomy, biology, physics), but also in the social 
sciences (e.g. education, history, sociology, life sciences). Since experiments in this area are difficult to design, 
mathematical models play an important role. The mathematical models capturing the dynamics of people have recently 
gained attention among many researchers [2,4,6,7,8,9,11,13,14,15,16,17,18] who have provided an extension to Strogatz’s 
seminal model. Also most of models have been restricted to integer order differential equations. In this paper, as an 
extension, we consider a system of nonlinear fractional differential equations by adding a third person (a secret lover) to the 
fractional order model reported in [11]. The fractional order model in [11] is given as 

 1

2

221111 )(1=)( AxxxtxD  
 

 2

2

112222 )(1=)( AxxxtxD  
 

with initial conditions  

 .=(0), =(0) 022011 xxxx  

Also, different from [11], a model with the order 2  is discussed. We are expecting an acceleration in feelings, that is why 

we increase the order of the derivative between 2.2<1   If fractional order models have been considered instead of its 

integer order counterpart, it can be more appropriate for this such dynamics. Because they are influenced by memory [2]. 

We begin by giving the definitions of fractional order integrals and derivatives [12]. 

Definition 1. The gamma function )(z  is defined by the integral  

 dttez zt 1

0
=)( 



  

which converges in the right half of the complex plane 0.>)(zRe  One of the basic properties of the gamma function is 

that it satisfies the following functional equation : 

 !=1)!.(=)(.=1)( zzzzzz   

  

Definition 2. The fractional integral of order 0>  of a function RRf :  is given by  
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Definition 3. The fractional derivative of order 0>  of a function RRf :  is given by 
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In this work, we use the operator known as "Caputo differential operator" given by  
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where   1= n  and    is the integer part of  . Under natural conditions on the function  ,tf  for n  the 

Caputo derivative becomes conventional derivative. The main advantage of Caputo’s definition is that the initial conditions 
for fractional differential equations with Caputo derivatives take on the same form as for integer-order differential equations. 
Also Caputo differential operator is convenient for modeling since the derivative of a constant is zero which means that this 
kind of derivative can be used to model the rate of change. 

The other difference between the Riemann-Liouville and the Caputo approaches, which is important for applications is given 
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below [12]. For the Caputo derivative we have 

     )<<10,1,2,...;=(,=)( nnmtfDtfDD m
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while for the Riemann-Liouville (fractional order derivative) derivative 

     ).<<10,1,2,...;=(,=)( nnmtftf m
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DDD  

The interchange of the differentiation operators in Caputo derivative and Riemann-Liouville derivative formulas is allowed 
under different conditions below: 
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 mnnsf s ,...1,,=0,=(0))(   

 nnm <<1;...0,1,2,=   

and 
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 .<<1;...0,1,2,= nnm   

We see that contrary to the Riemann-Liouville approach, in the case of Caputo derivative there are no restrictions on the 

values (0),)(sf   0,1=(s ... 1)., n  

2  A fractional order nonlinear triadic model 

 The model proposed in this paper is a fractional order nonlinear dynamic realistic model. Model describes a triadic 

relationship, in which a person A  is involved in romantic relationships with the persons B  and C . Here, it is assumed 

that B  and C  (both in relation with )A  would not know about one another and A  would exhibit the similar romantic 

style towards them both. In this model three cases have been considered (the forgetting process, the pleasure of being 
loved, and the reaction to the appeal of the partner). These three factors are assumed to be independent and are modeled 

by nonlinear functions (e.g.: )(1 2

iii xx   ). The model parameters specify the romantic styles of the couples. The signs of 

the parameters determine the type of romantic style that the particular individual can exhibit. Using the typology of Strogatz 
[15,16] and Sprott [18], four romantic styles can be given as: 

  • Eager Beaver: individual 1 is encouraged by his own feelings as well as that of individual 2 (and that of individual 3) (

0>i  and 0>i ). 

  • Secure or Cautious lover: individual 1 retreats from his own feelings but is encouraged by that of individual 2 (and that 

of individual 3) ( 0<i  and 0>i ) 

  • Narcissistic Nerd: individual 1 wants more of what he feels but retreat from the feelings of individual 2 (and that of 

individual 3) ( 0>i  and 0<i ). 

   • Hermit: individual 1 retreats from his own feelings and that of individual 2 (and that of individual 3) ( 0<i  and 

0<i ).  

This classification allows us to characterize the dynamics exhibited by various combinations of the romantic styles. 

In this paper, we focus on triadic relational dynamics characterized by secure or cautious lover interactions. Here in this 
model, we are expecting an acceleration in feelings, that is why, we increase the order of the derivative between 

2.2<1   To model the behavioral features of the dynamics of a triadic relation, the following model is considered:  
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 (2.1) 

with initial conditions 

 0=(0), 0=(0), 0=(0), 0=(0) 4321 xxxx  (2.2) 

where 2,2<1   0,>i  ,i  ,i  and i  1,2,3,4)=(i  are real constants. These parameters are oblivion, 

reaction, and attraction constants, respectively. 

We would like to highlight that this model can be applicable in reality. The functional structure of return factors are motivated 
by dynamics often portrayed in romance novels and tragic outcomes illustrated in them (Shakespeare’s Romeo and Juliet, 
Patriarch’s Canzoniere and Posteritati, Tolstoy’s Anna Karenia, Flaubert’s Madame Bovary, more recently the tragic suicide 

of Megan Meier). The constant   in return function (e.g.: )(1 2

112 xx   ) can be interpreted as the compensatory 

constant. For example, the romantic dynamics between Laura Winslow and Steve Urkel in the sitcom Family Matter can 
serve as a popular media example. When Steve Urkel despairs, Laura Winslow feels sorry for him and her antagonism is 
overcome by feeling of pity .As a result, she reverses her reaction to passion [3]. This behavioral characteristic is captured by 

the function of reaction or return function (e.g.: )(1 2

443 xx   ). This expression captures the compensation for antagonism 

with flattery, or pity, for positive and negative values of 4x  in ),(1 2

443 xx    respectively. Triadic relationship of Rainer 

Maria Rilke, Lou Andreas Salome and Nietzsche can be given for triadic relationship example in real world. 

In contrast to the other models such as in [11, and the models stated in [11]], we expand the order of the derivative between 
1 and 2, since we are expecting a strong time dependency (an acceleration in time) and memory effect in the dynamic of the 

relation. The equations of the system (2.1), respectively, govern the feelings )( 1x  of A  to ,B  the feelings )( 2x  of B  

to ,A  the feelings )( 3x  of C  to ,A  and the feelings )( 4x  of A  to .C  We note that with zero initial conditions, the 

following equation is valid [12]:  

 ))((=))(( 2 txDtxDD 
 

Let us make the following changes of variables: 

 

8474

6353

4232

2111

=,=

=,=

=,=

=,=

yxDyx

yxDyx

yxDyx

yxDyx









 

Then (2.1)-(2.2) is transformed to the system 
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 (2.3) 

with initial conditions 

 0=(0), 0=(0), 0=(0), 0=(0) 4321 yyyy  
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 0=(0), 0=(0), 0=(0), 0=(0) 8765 yyyy  

where 1,<0.5   0,>i  ,i  ,i  and i  1,2,3,4)=(i  are real constants. 

3  Equilibrium points and their locally asymptotic stability  

Let (0.5,1]  and consider the system 
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 (3.1) 

with the initial values  

 0=(0), 0=(0), 0=(0), 0=(0) 8642 yyyy  

 0=(0), 0=(0), 0=(0), 0=(0) 7531 yyyy  

Here  

 ,=),,,,,,,(,=),,,,,,,( 48765432132876543211 yyyyyyyyyfyyyyyyyyyf  

 ,))()(1(=),,,,,,,( 1

2

5353111876543212   yyyyyyyyyyyyyf  

 ,)(1=),,,,,,,( 2

2

11232876543214   yyyyyyyyyyyf  

 ,=),,,,,,,(,=),,,,,,,( 88765432176876543215 yyyyyyyyyfyyyyyyyyyf  

 ,)(1=),,,,,,,( 3

2

77352876543216   yyyyyyyyyyyf  

 .))()(1(=),,,,,,,( 4

2

3535171876543218   yyyyyyyyyyyyyf  

To evaluate the equilibrium points, let 

 6,7,81,2,3,4,5,=0,=),,,,,,,(0=)( 87654321 iyyyyyyyyftyD ii


 

from which we can get the equilibrium points ,0,0,0)(0,0,0,0,0=0K  for 0==== 4321   and 

).,,,,,,,(= 876543211

 yyyyyyyyK  

The Jacobian matrix )( 1KJ  for the system given in (2.3) is 
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where  

 ).3(1=),3(1=),)(3(1= 2
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2
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2

531

  ycybyya   

To discuss the local stability of the equilibrium ),,,,,,,(= 876543211

 yyyyyyyyK  of the system given by (2.3), we 

consider the linearized system at 1K . The characteristic equation of the linearized system is of the form 

 )(2)(2=)( 2

221

4

12

68 acabP    

 
2 2

1 2 2 1 2 1 2( )a b a c a c a c           (3.2) 

 0=  

If 
2  is taken as ,k  we have the following reduced equation: 

 0==)( 43

2

2

3

1

4 akakakakP   (3.3) 

where 

 1 2 1= (2 )a    (3.4) 

 )(2= 2

2212 acaba   

 )(= 212

2

213 cacabaa    

 )(= 214 caa   

According to the fractional Routh–Hurwitz criteria we have the following theorem. 

Theorem 1. If 0,>1a  0,>2a  0,>3a  0>4a  and 0>4

2

1

2

3321 aaaaaa   then the equilibrium point 

),,,,,,,(= 876543211

 yyyyyyyyK  is locally asymptotically stable for all (0.5,1].   

Proof. ),,,,,,,(= 876543211

 yyyyyyyyK  equilibrium of the system given by (2.3) is asymptotically stable if all of the 

eigenvalues, ,ik  1,2,3,4=i  of )( 1KJ  satisfy the following condition (negative real part) [1,10] : 

 .
2

>arg


i  

For 4=n , the Routh-Hurwitz criteria are 0,>1a  0,>2a  0,>3a  0>4a  and 0.>4

2

1

2

3321 aaaaaa   It is a 

necessary and sufficient condition for the negativity of the real parts of all the roots of the polynomial ).(P      

If one of the conditions above does not hold, model gives rise to unbounded feeling, which is obviously unrealistic. 

4  Numerical simulation of model 

By selecting the appropriate parameters, we can make predictions of what might happen to couples at future. The model 
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parameters can be derived from the couple’s interaction in the special observation rooms. But this way is not always 
possible. It is not easy to find suitable couples. 

  In nonlinear dynamic systems, predictability is possible during periods of stability. Also relationship development would be 
completely predictable given the right parameters. In this model, parameters provide the condition for the locally 
asymptotically stable of equilibrium points by using stability analysis on fractional order system. 

  In this paper we focus on triadic relational dynamics characterized by cautious lover interactions (individual 1 retreats from 

his own feelings but is encouraged by that of individual 2 (and that of individual 3) ( 0<i  and 0>i )). Depending on 

the parameters, many scenarios are possible. 

 Letting  

 

and we consider the system with 1.2=2  

 














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

0.3))0.001()(10.0003(0.01=)(

0.2)0.001(10.00050.02=)(

0.03)0.001(10.00060.02=)(

0.1))0.001()(10.0003(0.01=)(
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232344

2

2
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2

2
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2

2
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2

xxxxxtxD
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







 

Let the initial conditions be  

 0=(0), 0=(0), 0=(0), 0=(0) 4321 xxxx  

After system is transformed, following system is obatained with the order 0.6.=   

 1 2( ) =D y t y
 (4.1) 

 0.1))0.001()(10.0003(0.01=)( 2

535312  yyyyytyD
 

 43 =)( ytyD
 

 0.03)0.001(10.00060.02=)( 2

1134  yyytyD
 

 65 =)( ytyD
 

 0.2)0.001(10.00050.02=)( 2

7756  yyytyD
 

 87 =)( ytyD
 

 0.3))0.001()(10.0003(0.01=)( 2

353578  yyyyytyD
 

Let the initial conditions be 

 2 4 6 8(0) = 0 , (0) = 0 , (0) = 0 , (0) = 0y y y y  (4.2) 

 0=(0), 0=(0), 0=(0), 0=(0) 7531 yyyy  

Positive equilibrium point for the problem  4.1 -  4.2  is calculated as: 

  0,= 1.76508,= 0,= 9.76815,= 4321

 yyyy  

 0= 30.2318,= 0= 10.065,= 8765

 yyyy  

For the numerical solution of  4.1 -  ,4.2  the predictor corrector method have been used for 0.6=  [5]. The 

solutions ,1y  ,3y  ,5y  7y  of the initial value problem  4.1 -  4.2  correspond, respectively to the solutions ,1x  ,2x  
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,3x  4x  of the problem (2.1) - (2.2).  

We not that followings are the some results of our investigations of appropriate model parameters. Parameters provide the 
condition for the locally asymptotically stable of equilibrium points by using stability analysis on fractional order system. 

   We have demonstrated via numerical simulations that the fractional order nonlinear triadic model (2.1) - (2.2)  can 

exhibit asymptotic behavior in the presence of nonlinearity for an appropriate set of model parameters. The solutions ,1x  

,2x  ,3x  4x  (respectively, govern the feelings )( 1x  of A  to ,B  the feelings )( 2x  of B  to ,A  the feelings )( 3x  

of C  to ,A  and the feelings )( 4x  of A  to C ) are displayed in the Figure 1. We have observed that the model 

approaches the equilibrium points asymptotically. 

 

Figure 1. Solutions
1x (dashed),

2x (dotted),
3x (solid),

4x (thick) 

 

5  Concluding Remarks 

   Why we have been considered this kind of mathematical model ? The answer is that it can provide two new things. First, 
we will see that the fractional order model provides a new language for thinking about couples relationship and, second, 
once we have the equations for a triadic relationships, we can simulate the couple’s behavior in circumstances. 

   So in this paper a fractional order nonlinear dynamic model, involving three person, have been presented and discussed. 
The resulting model is a fractional order nonlinear dynamic system, which turns out to be positive if the appeals of the two 

individuals ( A  and B  or A  and )C  are positive. The model predicts, that the feelings of the partners ( A  and B ) or 

( A  and C ) go to an equilibrium level starting from initial conditions. The value of this level, in other words, the quality of 

the romantic relationship at equilibrium, is higher if the reactiveness to love and appeal are higher. We can say that for the 

model under consideration, the dynamics of the couples A  and B  are more robust than the dynamics of the couples A  

and .C  

Finally, we have demonstrated via numerical simulations that a fractional order nonlinear model of triadic relationship can 
exhibit asymptotic behavior in the presence of an appropriate set of model parameters. 

In summary, the paper provides a new viewpoint on fractional order models. With expecting on acceleration in feelings, 
different fractional order models can be considered. 
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