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ABSTRACT  

The generalized stable sets solution introduced by van Deemen (1991) as a generalization of the von Neumann and 
Morgenstern stable sets solution for abstract systems. If such a solution concept exists, then it is equivalent to the admissible 
set appeared in game theory literature by Kalai and Schmeidler (1977). The purpose of this note is to provide a 
characterization for the existence of the generalized stable sets solution. (Minimal) undominated element, (Generalized) 
Stable Set, Admissible set. 
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1  Introduction 

Von Neumann and Morgenstern in their classical work Theory of Games and Economic Behavior (1947) introduced the  

Theory of Solutions and Standards of Behavior. This theory specifies that a set F  of elements (imputations) is a  Von 

Neumann-Morgenstern solution when it possesses two properties: ( a ) No element inside F  is dominated
1
 by an element 

inside F  and (b ) Every element outside F  is dominated by some element inside F  (see [5, Page 40]). Later, the term  

Von Neumann and Morgenstern’s stable set solution has been used for F  by many authors to avoid confusion with other 
solution concepts. Von Neumann and Morgenstern give an interpretation of stable sets: A stable set is a characterization of 
what may be acceptable or established as a“ standard of behavior” in society. The idea being that all the imputations in any 
given stable set correspond to some mode of behavior while imputations in different stable sets correspond to different 
modes of behavior. The core is contained in each Von Neumann-Morgenstern stable set. The Von Neumann-Morgenstern 
stable sets will be empty in the case of odd cycles. To avoid this particular problem, Van Deemen introduced the notion of the 
generalized stable set which is able to produce a solution for every possible cyclic binary relation. 

Kalai and Schmeidler in [2] introduced the concept of the admissible set. The admissible set concept can be applied to a host 
of game-theoretic situations, ranging from non-cooperative games, where a coalition consists of an individual player, to fully 
cooperative games, where any coalition can be allowed to form. An equivalent definition of the concept of admissible set was 
introduced by Schwartz in [3]. Andrikopoulos in [1, Theorem 22] showed that if a generalized stable set solution exists, the 

union of all generalized stable sets of ),( RX  is equivalent to the admissible set. 

In this note, we prove that a feasible set
2
 has a generalized stable set with respect to a dominance relation, if and only if 

every undominated set has a minimal undominated subset with respect to this relation. This is done in a general framework 
on which “ dominance relation” means arbitrary binary relation defined in infinite set of alternatives. The approach that we 
take consists of associating each game or social activity with an abstract system (i.e., an abstract set endowed with a binary 
relation). For instance, Kalai and Schmeidler in [2] associate the mixed extension of a normal form game with an abstract 
system using a binary relation that only accounts for profitable single deviations. 

2  The Main Result 

We consider a dominance relation, denoted by R , and a (finite or infinite) non-empty set of alternatives X . An  abstract 

system is a pair ),( RX  where X  is a set of alternatives and R  is a dominance relation on X . We sometimes 

abbreviate Ryx ),(  as xRy . The  asymmetric part of R  is defined as the binary relation )(RP  on X  with 

yRxP )(  if and only if xRy  but not yRx . A subset XD  is R - undominated if and only if for no Dx  there is 

a DXy \  such that yRx . This was also defined by Kalai and Schmeidler under the name of R - closed set (see [2, 

Page 404]). An R -undominated set is  minimal if none of its proper subsets has this property. The  transitive closure of 

R  is |),{(= yxR  there exist NK  and Xxx
K
,...,

0
 such that 

0
=[ xx  and Rxx

kk



),(

1
 for all 

}{1,...,Kk  and ]}= yx
K

. The sequence 
121

,...,,
K

xxx  is known as the  R -path from x  to y . The 

transitive closure of R  sometimes referred to as the  path dominance relation of R . A subset F  of X  is called a  

generalized stable set with respect to R  (see [4, Page 257]) if (i) for no element in F , an R -path starts toward another 

element in F , and (ii) for every x  outside F , an R -path starts from some y  in F  terminating at x . The first 

property is called  internal stability of domination and the second property  external stability of domination. In fact, F  is a 

generalized stable set of X  if it is a stable set of X  with respect to the R -path dominance relation. The  generalized 

stable sets solution for an abstract system ),( RX  is the collection of all its generalized stable sets. The  admissible set 

for an abstract system ),( RX  is the set XyXxRX  |{=),(A  and Rxy ),(  implies }),( Ryx   (see [2, 

Definition in Page 403]). The admissible set of ),( RX  is equivalent to the union of all minimal R -undominated subsets 

of X  (see [2, Theorem 5]). 

The following theorem gives a characterization of the generalized stable sets solution. Note that this result can be applied to 
any dominance relation.  

Theorem. Let ),( RX  be an abstract system. Then, ),( RX  has a generalized stable set if and only if every R

-undominated set has a minimal R -undominated subset. 

 

                                                        
1
 The notion of Domination or Superiority is defined in [5, Page 37]. It refers to any process of comparing entities in pairs in order to find 

which pair is preferred, or has a greater amount of some quantitative property. 
2
 The  feasible set is the set of all alternatives (commodity bundles or payoff outcomes) that are possible solut ions. 
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Proof. To prove the necessity of the theorem, assume that ),( RX  has a generalized stable set, say F . Let D  be the 

family of all the R -undominated subsets of X . We first show that D . Suppose to the contrary that this is not the 

case. Then, for each Xx  the singleton set }{x  is not R -undominated. Therefore, there exists Xy   satisfying 

Rxy . Without loss of generality we can assume that Fx . Since F  satisfies internal stability of domination we 

conclude that Fy  . Hence, there exists Fz  (because of external stability of domination) such that Ryz ),( . It 

follows that Rxz ),( . Since Fxz ,  this is impossible unless we have xz = . Therefore, xRy  and 
yRx . We 

define a set 
D  as follows:  

 }a|{= yRxndxRyXyD 
.  

This set is non-empty, since 
Dy . We prove that 

D  is an R -undominated subset of X . Indeed, assume that 

Ry  for some 
 DX \  and some 

Dy . It follows that Rx ),( . Since Fx , as in the case of 
y  

above, we conclude that Rx ),(  . Therefore, 
D  which is impossible. The last implication shows that 

D  is an 

R -undominated subset of X  and thus D , a contradiction to the hypothesis that =D . Therefore, D . 

Let now DD . We show that D  has a minimal R -undominated subset 
M

D . First, we prove that FD . 

Indeed, let Dx . If Fx , then this is evident. Otherwise, for suppose Fx , there exists Fy  such that 

Rxy ),( . Therefore, there exists a natural number n  and alternatives 
nn

xxxx ,,...,,
121 

 such that 

RxRxxyRx
nn 11

...


. Since Dx , if DXx
n

\  we cannot have Rxx
n

. It then follows that Dx
n
 . Similarly, 

Dx
n


1
, and an induction argument based on this logic yields Dy . Hence in any case FD  must be true. 

Let now FDz  . If z  is an R -undominated element, then 
M

Dz =}{  is a minimal R -undominated subset of D

. Otherwise, there exists Xw   such that RRzw  ),( . Since F  satisfies internal stability of domination we 

conclude that Fw  . Hence, there exists Fw'   such that Rww' ),( . It follows that Rzw' ),( . Since 

Fzw' , , we must have zw' = . It follows that Rwz ),( . Let }),(a),(|{= RwzndRzwXwD 
M

. 

Since 
M

Dw  , 
M

D . We prove that 
M

D  is a minimal R -undominated subset of X  such that DD 
M

. 

To show that 
M

D  is R -undominated, suppose that RRws ),(  for some 
M

DXs \  and 
M

Dw ; to 

deduce a contradiction. It follows that Rzs ),(  which implies that Fs . Therefore, there exists Fs'   such that 

Rss' ),( . Hence, Rzs' ),( . Since Fzs' ,  this is impossible unless we have zs' = . It follows that Rsz ),(  

which jointly to Rzs ),(  leads to a contradiction with 
M

DXs \ . This contradiction implies that 
M

D  is R

-undominated. Since for each 
M

Dw , the set }{\ wD
M

 is not R -undominated, it follows that 
M

D  is a minimal R

-undominated subset of X . It remains to prove that DD 
M

. To see this, let 
M

Dw . Then, it must be that 

Rzw ),(  , i.e., there exist 
n

zzz ,...,,
21

 such that RzzwRz
n

...
1

. Since D  is R -undominated and Dz , it 

follows as above that Dw . 

For the sufficiency of the theorem, we suppose that every R -undominated set has a minimal R -undominated subset. 

First, we prove that under this assumption ),( RX  has at least one minimal R -undominated subset. There are two cases 

to consider: (i) There exists Xx 
0

 such that for each Xy , )(),(
0

RPxy  ; (ii) For every Xx  there exists 

Xy  such that xRyP )( . In case (i), if 
0

x  is an R -undominated element then }{
0

x  is a minimal R -undominated 
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subset of X . Otherwise, there exists Xy   such that RRxy  ),(
0

. Since )(),(
0

RPxy 
 we conclude 

that Ryx ),(
0

. Let }),(a),(|{=
00

RyxndRxyXyD 


. Clearly, 

D . We now show that 


D  is a 

minimal R-undominated set. Indeed, suppose to the contrary, that Ryz ),(  for some 

DXz \  and 


Dy . It 

follows that Rxz ),(
0

. Since )(),(
0

RPxz  , we conclude that Rzx ),(
0

. Hence, 

Dz , a contradiction. 


D  

is also minimal since none of its proper subsets is R -undominated. In case (ii), let Xx . We define a set 
x

A  as 

follows:  

 })(|{= xRyPXyA
x

 .  

It easy to check that XxXA
x

 }{\  is an R -undominated set in X . By the assumption, there exists a minimal 

R -undominated set 

D  such that 

x
AD 


. In both cases, therefore, ),( RX  has a minimal R -undominated set. To 

prove that ),( RX  has a generalized stable set, let }|{= IiD
i




D  be the family of all the minimal R -undominated 

subsets of X . Since 

DD , this set is non empty. For each Ii , we choose a 

ii
Dd


 . We show that 

}|{= Iid
i




D  is a generalized stable set of ),( RX . We first show that D  satisfies internal stability of domination. 

Indeed, suppose to the contrary that Rdd
ji
),(


 for some Iji , . Therefore, there exists a natural number n  and 

alternatives 
nn

 ,,...,,
121 

 such that 
jnni

dRRRd



11

...


. Then, since 
j

D


 is R -undominated, following 

the above reasoning, as 
n

xx ,...,
1

, we get 
ji

Dd


 , a contradiction since  =
ji

DD


 (
i

D


 and 
j

D


 are 

minimal R -undominated subsets of X ). Hence, Rdd
ji
),(


. To complete the proof it remains to prove that D  

satisfies external stability of domination. Let D\Xw . We prove that Rwd
k

),(


 for some Ik . There are two 

cases to consider: )(
1

a  
k

Dw


  for some Ik ; )(
2

a  
iIi

Dw



 .  

Case )(
1

a . Since D\Xw , it follows that }{wD
k



. Put }),(|{= RwsDsB

kw



. We have that 

w
B

, because otherwise, for each 
k

Ds


 , Rws ),(  implies that Rws ),( , and hence 
k

Dw


}{  is an R

-undominated subset of X , a contradiction because of the minimal character of 
k

D


. Let 
wkk

BDD \=


. We now 

show that =
k

D


. We proceed by contradiction. Assume that 
k

D


. Then, for each 
k

Ds


  and each 
w

Bs  

we have Rss ),(


 for suppose otherwise, Rss ),(


 implies that Rws ),(


 contradicting 
k

Ds


 . Therefore, 
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kw
DB


  is an R -undominated subset of X , again a contradiction. Hence, =
k

D


. It follows that 
wk

BD =


. But 

then, since 
kk

Dd


  we conclude that Rwd
k

),(


.  

  Case )(
2

a . Let 
iIi

Dw



 . We define  

            }),(|{= RwrXrA
w

 .  

We show that 
w

A  is non-empty. Indeed, suppose to the contrary that for each Xr , Rwr ),( . Then, 
i

Dw


=}{  

for some Ii , a contradiction to 
iIi

Dw



 . Hence, 

w
A . Since 

w
A  is R -undominated, by the asumption, 

there exists a minimal R -undominated subset 
k

D


, Ik , such that 
wk

AD 


. It follows that Rwd
k

),(


. The 

last conclusion completes the proof.  

The following result is an immediate corollary of the above theorem. 

Corollary. [4, Theorem 3]. Let X  be a nonempty finite set and R  a non-empty asymmetric binary relation on X . Then 

there exists a generalized stable set F  such that F  is non empty. 

Considering [2, Theorem 5] which shows that the admissible set is equivalent to the the union of all its R -undominated sets 
and [1, Theorem 22], we obtain that under the assumption that a generalized stable set exists, the union of all generalized 

stable sets coincides with the union of all R -undominated sets. In this case, the two general solution conceps are identical. 
But when the union of generalized stable sets is empty, that is not so, as the following example shows. Let 

}|{},1|{= NN  myNNnxX
mn

 . Define the relation R  as follows: 
n'n

Rxx  for each nn' >  and 

m'm

Ryy  for each mm' > . Then R  is a partial order. Clearly, each subset of X  violates external stability of 

domination. Thus, the family of generalized stable sets in X  is empty. On the other hand, the admissible set is equal to the 

singleton }{
N

x . 
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