

On Contra -wgrα-Continuous and Almost Contra-wgrα-Continuous Functions

¹C.Janaki and ²A.Jayalakshmi
¹L.R.G.Govt.Arts.College for Women, Tirupur, TN, India. janakicsekar@yahoo.com
²Sri Krishna College of Engineering and Technology, Coimbatore, TN, India. arumugajaya@gmail.com

Abstract

In this paper a new class of function called contra-wgrα continuous function is introduced and its properties are studied. Further the notion of almost contra wgrα-continuous function is introduced.

Keywords: contra wgrα-continuous; almost contra wgrα-continuous; ap-wgrα-continuous; wgrα-regular graph; strongly contra wgrα-closed and contra wgrα-closed.

Mathematical Subject classification: 54C05, 54C08, 54C10.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 5, No. 1 editor@cirworld.com www.cirworld.com, member.cirworld.com brought to you by DCORE

ISSN 2347-1921

1. Introduction

Many topologists studied various types of generalizations of continuity [4, 12, 13].In 1996, Dontchev[5] introduced contracontinuous functions. Jafari and Noiri[8] introduced contra- α continuous functions. A new weaker form of function called contra semi continuous function is introduced and investigated by Dontchev and Noiri[6]. Contra β -continuous and contra almost β -continuous, almost contra pre-continuous, contra π gb-continuous functions were introduced by Baker[1], E.Ekici [7], D.Sreeja and C.Janaki[19].

The aim of this paper is to study the notion of contra wgr α -continuous, almost contra wgr α -continuous and its various characterizations are discussed. Also we study the basic properties of approximately wgr α -continuous functions and wgr α -regular graph.

2. Preliminaries

Throughout this paper (X,τ) and (Y,σ) represent non-empty topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a space (X,τ) ,cl(A) and int(A) denote the closure of A and the interior of A respectively. (X,τ) will be replaced by X if there is no chance of confusion.

Definition:2.1

A subset A of a space (X,T) is called

(i) α -open [14] if A \subset int(cl(int(A))) and α -closed if cl(int(cl(A))) \subset A.

(ii) a regular open[22] if A=int(cl(A)) and a regular closed set if A=cl(int(A)).

(iii) a regular α -open[23] if there is a regular open set U such that U \subset A \subset α cl(U).

(iv) a weak generalized regular α -closed (wgr α -closed)[9]if cl(int(A)) \subset U whenever A \subset U and U is regular α -open.

The family of all α -open subsets of a space (X, τ) is denoted by $\alpha O(X)$ and the collection of all α -open subsets of X containing a fixed point x is denoted by $\alpha O(X,x)$.

Definition:2.2

A function $f:X \rightarrow Y$ is called

- (i) wgra-continuous [9] if for every $f^{-1}(V)$ is wgra-closed in (X,τ) for every closed set V of (Y,σ) .
- (ii) wgra-irresolute [9] if for every $f^{-1}(V)$ is wgra-closed in (X, τ) for every wgra-closed set V of (Y, σ).

(iii) contra-continuous [5] if $f^{-1}(V)$ is closed in X for each open set V of Y.

- (iv) regular set connected [3] if $f^{-1}(V)$ is clopen in X for every regular open set V of Y.
- (v) contra- α -continuous [8] if $f^{1}(V)$ is α -closed in X for each open set V of Y.
- (vi) R-map[2] if $f^{-1}(V)$ is regular open in X for each regular open set V of Y.

(vii) wgra-open(resp.wgra-closed)[11] if f(U) is wgra-open(resp.wgra-closed) in Y for each wgra-open set (resp.wgra-closed)U of X.

(viii) almost continuous [16] if $f^{-1}(V)$ is open in X for every regular open set.

(ix) perfectly continuous [18] if $f^{-1}(V)$ is clopen in X for every open set V of Y.

Definition:2.3

A topological space X is

- (i) wgrα-space[11] if every wgrα-closed set is closed.
- (ii) wgra-T_{1/2} space[11] if every wgra-closed set is a-closed.
- (iii) strongly -S-closed[5] if every closed cover of X has a finite sub-cover.
- (iv) mildly compact[20] if every clopen cover of X has a finite sub-cover.
- (v) strongly-S-lindelof[5] if every closed cover of X has a countable sub-cover.
- (vi) nearly Compact[17] if every regular open cover of X has a finite subcover.
- (vii) nearly-Lindelof [17] if every cover of X by regular open sets has a countable subcover
- (viii) weakly Hausdorff[18] if each element of X is an intersection of regular closed sets.
- (ix) wgrα-connected [10] provided that X is not the union of two disjoint non-empty wgrα-open sets.

(x) wgrα-compact [14]if every wgrα-open cover of X has a finite subcover.

(xi) hyper connected [21] if every open set is dense.

3. Contra-wgra-Continuous and Almost Contra-wgra-Continuous

Definition:3.1

A function f: $X \rightarrow Y$ is called contra wgra-continuous if $f^{-1}(V)$ is wgra-closed set in X for every open set V of Y.

Definition:3.2

A function f: $X \rightarrow Y$ is called almost contra wgra-continuous if $f^{-1}(V)$ is wgra-closed set in X for every regular open set V of Y.

Definition:3.3

A function f:X \rightarrow Y is called contra-rg α -continuous if f⁻¹(V) is rg α -closed in X for each open set V of Y.

Theorem:3.4

Every contra continuous function is contra wgra-continuous, but not conversely.

Proof:

It follows from the fact that every closed set is wgra-closed.

Example:3.5

Let $X=Y=\{a,b,c\}, \tau=\{\phi,X,\{a\},\{c\},\sigma=\{\phi,X,\{a,c\},\sigma=\{\phi,X,\{a,c\},f:X\rightarrow Y \text{ defined by } f(a)=b,f(b)=a \text{ and } f(c)=c.$ Therefore f is contra wgracontinuous, but it is not contra continuous.

Definition:3.6

A space (X,T) is called wgra-locally indiscrete if every wgra-open set is closed.

Example:3.7

Let $X=\{a,b\}, \tau=\{\phi, X, \{a\}, \{b\}\}$. Here the space (X, τ) is wgr α -locally indiscrete space.

Theorem:3.8

If a function f: $X \rightarrow Y$ is wgra-continuous and (X, τ) is wgra-locally indiscrete, then f is contra continuous.

Proof:

Let V be an open set of (Y,σ) . Then $f^1(V)$ is wgra-open in (X,τ) as f is wgra-continuous. Since (X,τ) is wgra-locally indiscrete, $f^1(V)$ is closed in (X,τ) . Hence f is contra continuous.

Theorem:3.9

Every contra wgra-continuous function is almost contra wgra-continuous, but not conversely.

Proof:

Since every regular open set is open, the proof follows.

Example:3.10

Let X=Y={a,b,c}, τ ={ ϕ ,X,{a},{b},{a,b}} and σ ={ ϕ ,Y,{a},{a,b}}.Define the identity function f:X \rightarrow Y. Therefore f is almost contra wgra-continuous, but it is not contra wgra-continuous.

Theorem:3.11

If a function f:X \rightarrow Y is almost contra wgra-continuous, almost continuous and X is T_{wgra}-space,then f is regular set connected.

Proof;

Let V be a regular open set in (Y,σ) . Since f is almost contra wgra-continuous and almost continuous, $f^{-1}(V)$ is wgra-closed and open. Hence $f^{-1}(V)$ is clopen. Therefore f is regular set connected.

Theorem:3.12

For a function $f:X \rightarrow Y$, the following properties are equivalent.

(i) f is almost contra wgrα-continuous

(ii) $f^{-1}(F) \in WGR\alpha O(X)$ for every $F \in RC(Y)$.

(iii)For each $x \in X$ and each regular closed set F in Y containing f(x), there exists a wgr α -open set U in X containing x such that f(U) \subset F.

(iv) For each $x \in X$ and each regular open set V in Y containing f(x), there exists a wgr α -closed set K in X not containing x such that $f^{-1}(V) \subset K$.

(v) $f^{1}(int(cl(G))) \in WGR\alpha C(X)$ for every open subset G of Y.

(vi) $f^{-1}(cl(int(F))) \in WGRaO(X)$ for every closed subset F of Y.

Proof:

(i) ⇒(ii)

Let $F \in RC(Y)$. Then $Y-F \in RO(Y)$ and by (i), $f^{-1}(Y-F)=X-f^{-1}(F)$ is wgra-closed in X. This implies that $f^{-1}(F)$ is wgra-open set in X. Therefore (ii) holds.

(ii)⇒(i)

Let G be a regular open set inY.Then Y–G is a regular-closed set in Y.By (ii), $f^{1}(Y-G)=X-f^{1}(G)$ is wgra-open in X. which implies that $f^{1}(G)$ is wgra-closed set in X. Therefore f is almost contra wgra-continuous.

(ii)⇒(iii)

let F be any regular closed set in Y containing f(x).By(ii), $f^{-1}(F) \in WGR\alpha O(X,\tau)$ and $x \in f^{-1}(F)$. Take U= $f^{-1}(F)$. Then $f(U) \subset F$.

 $(iii) \Longrightarrow (ii)$

Let $F \in RC(Y,\sigma)$ and $x \in f^{1}(F)$. From(iii), there exists a wgra-open set U_x in X containing x such that $U_x \subset f^{1}(F)$. We have $f^{1}(F) = \bigcup \{U_x : x \in f^{1}(F)\}$. Then $f^{1}(F)$ is wgra-open.

 $(iii) \Longrightarrow (iv)$

Let V be any regular closed set in Y containing f(x). Then Y–V is a regular closed set containing f(x). By(iii), there exists a wgr α -openset U in X containing x such that $f(U) \subset Y-V$. Hence $U \subset f^1(Y-V) \subset X-f^1(V)$. Then $f^1(V) \subset X-V$. Take K=X–U. We obtain a wgr α -closed set in X not containing x such that $f^1(V) \subset K$.

 $(iv) \Longrightarrow (iii)$

Let F be a regular closed set in Y containing f(x). Then Y–F is a regular open set in Y not containing f(x). By (iv) there exists a wgra-closed set K in X not containing x such that $f^{-1}(Y-F) \subset K$. This implies $X-f^{-1}(F) \subset K$, which implies $f(X-K) \subset F$. Take U=X–K. Then U is a wgra-open set in X containing x such that $f(U) \subset F$.

 $(ii) \Longrightarrow (v)$

Let G be a open set in Y. Then int(cl(G)) is regular open set in Y.which implies that Y-int (cl(G)) is regular-closed in Y.By(ii),

 $f^{1}(Y-int(cl(G)))$ is wgra-open in X. Therefore $f^{-1}(int(cl(G)))$ is wgra-closed in X.

 $(v) \Longrightarrow (vi)$

Let F be closed in Y.Then cl(int(F)) is regular-closed in Y and Y-F is open. $By(v), f^{1}$ (int (cl(Y-F))) is wgra-closed set in X.We have

 $f^{-1}(int(cl(Y-F)))=f^{-1}(int(Y-int(F)))$

 $=f^{-1}(Y-cl(int(F)))$

 $=X-f^{-1}(cl(int(F))).$

Hence, we obtain that $f^{-1}(cl(int(F)))$ is wgra-open in X.

 $(vi) \Longrightarrow (v)$

Let V be open in Y, then Y–V is closed, which implies that cl(int(Y–V)) is regular closed. By (iv) $f^{1}(cl (int (Y–V)))$ is wgraopen in X.Therefore $f^{1}(int(cl(V)))$ is wgra-closed in X.

Theorem:3.13

(i) If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra wgra-continuous and (X,τ) is wgra- $T_{1\backslash_2}$ -space, then f is contra a-continuous.

(ii) If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra wgra-continuous and (X,τ) is T_{wgra} -space, then f is contra continuous.

(iii) If a function f: $(X,\tau) \rightarrow (Y,\sigma)$ is contra wgra-continuous and (X,τ) is T_{wgra} -space, then f is contra rga-continuous.

Proof:

(i) Let V be open in (Y,σ) .By hypothesis, $f^{-1}(V)$ is wgra-closed in (X,τ) . Since X is wgra- $T_{1/2}$ space, $f^{-1}(V)$ is a-closed in X. Hence f is contra a-continuous.

(ii) Let V be open in (Y,σ) .By hypothesis, $f^{1}(V)$ is wgra-closed in (X,τ) .Since X is T_{wgra} -space, $f^{1}(V)$ is closed in X. Hence f is contra continuous.

(iii) Let V be open in (Y,σ) .By hypothesis, $f^{1}(V)$ is wgra-closed in (X,τ) . Since X is T_{wgra} -space, $f^{1}(V)$ is rga-closed in X. Hence f is contra rga-continuous.

Theorem:3.14

Let f: $X \rightarrow Y$ be a function and let g: $X \rightarrow X \times Y$ be the graph function of f, denoted by g(x)=(x,f(x)) for every $x \in X$. If g is almost contra wgra-continuous function, then f is almost contra wgra-continuous.

Proof:

Let V be a regular closed set in Y, then $X \times V = X \times cl(int(V)) = cl(int(X)) \times cl(int(V)) = cl(int(X \times V))$. Therefore, $X \times V$ is regular closed in $X \times Y$. Since g is almost contra wgra-continuous, then $f^{-1}(V) = g^{-1}(X \times V)$ is wgra-open in X. Thus f is almost contra wgra-continuous.

Theorem:3.15

For two functions f: $X \rightarrow Y$ and g: $Y \rightarrow Z$, let $g \circ f$: $X \rightarrow Z$ is a composition function. Then the following properties hold:

(i) If f is almost contra-wgr α continuous and g is an R-map, then g \circ f is almost contra wgr α -continuous.

(ii) If f is almost contra wgra-continuous and g is perfectly continuous, then $g \circ f$ is contra wgra-continuous.

(iii) If f is contra wgra-continuous and g is almost continuous, then $g \circ f$ is almost contra wgra-continuous.

Proof:

(i) Let V be any regular open set in Z. Since g is an R-map, g⁻¹(V) is regular open. Since f is almost contra wgrα-continuous,

 $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is wgra-closed set in X. Therefore $g \circ f$ is almost contra wgra-continuous.

(ii) Let V be open in Z, since g is perfectly continuous, $g^{-1}(V)$ is clopen in Y. Since f is almost contra wgra-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is wgra-closed set in X. Therefore $g \circ f$ is contra wgra-continuous.

(iii) Let V be any regular open set in Z. Since g is almost continuous, g⁻¹(V) is open in Y. Since f is contra wgrα-continuous,

 $f^{-1}(g^{-1}(V))=(g \circ f)^{-1}(V)$ is wgra-closed set in X. Therefore $g \circ f$ is almost contra wgra-continuous.

Theorem:3.16

If $f:X \rightarrow Y$ is surjective wgra-open(or wgra-closed)and $g:Y \rightarrow Z$ is a function such that $g \circ f:X \rightarrow Z$ is almost contra wgra-continuous, then g is almost contra wgra-continuous.

Proof:

Let V be any regular closed (resp.regular open) set in Z.Since $g \circ f$ is almost contra wgra-continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is wgra-open(resp.wgra-closed), we have $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is wgra-open. Therefore, g is almost contra wgra-continuous.

Theorem:3.17

Let $f:X \rightarrow Y$ be a function and $x \in X$. If there exists $A \in WGRaO(X)$ such that $x \in A$ and the restriction of f to A is almost contra wgra-continuous at x, then f is almost contra wgra-continuous at x.

Proof:

Suppose $f \in RC(Y)$ containing f(x),Since f | A is almost contra wgra-continuous at x,there exists $V \in WGRaO(A)$ containing x such that $f(V)=(f | A)(V) \subset F$.Since $A \in WGRaO(X)$ containing x, we obtain that $V \in WGRaO(X)$ containing x,by theorem 2.18.

Theorem:3.18

Suppose that wgr α -open sets are open under finite intersection. If f:X \rightarrow Y is almost contra wgr α -continuous function and A is a wgr α open subset of X, then the restriction f |A :A \rightarrow Y is almost contra wgr α -continuous

Proof:

Let $F \in RC(Y)$. Since f is almost contra wgra-continuous, $f^{1}(F) \in WGRaO(X,\tau)$. Since A is wgra-open in X. It follows that $(f|A)^{-1}(F) = A \cap f^{1}(F) \in WGRaO(A,\tau)$. Therefore f |A is almost contra wgra-continuous.

Theorem:3.19

Let $f:X \rightarrow Y$ and $g:Y \rightarrow Z$ be function. Then the following properties hold.

(i) If f is almost contra wgra-continuous and g is regular set connected, then $g \circ f: X \rightarrow Z$ is almost contra wgra-continuous and almost wgra-continuous.

(ii) If f is contra wgra-continuous and g is regular set connected, then $g \circ f: X \rightarrow Z$ is almost contra wgra-continuous and almost wgra-continuous.

Proof:

(i) Let $V \in RO(Z)$.Since g is regular set connected, $g^{-1}(V)$ is clopoen in Y. Since f is almost contra wgra-continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is wgra-open and wgra-closed. Therefore $g \circ f$ is almost contra wgra-continuous and almost wgra-continuous.

(ii) Let $V \in RO(Z)$. Since g is regular set connected, $g^{-1}(V)$ is clopoen in Y. Since f is contra wgra-continuous, $f^{-1}(g^{-1}(V)) = g^{-1}(V)$

 $(g \circ f)^{-1}(V)$ is wgra-open and wgra-closed. Therefore $g \circ f$ is almost contra wgra-continuous and almost wgra-continuous.

Theorem:3.20

If a function $f:X \rightarrow Y$ is almost contra wgra-continuous ,almost continuous and X is T_{wgra} -space,then f is regular set connected.

Proof:

Let V be a regular open set in Y.Since f is almost contra wgra-continuous and almost continuous, $f^{-1}(V)$ is wgra-closed and open. Since X is T_{wgra} -space, $f^{-1}(V)$ is clopen. Hence f is regular set connected.

Theorem:3.21

Let $f:X \rightarrow Y$ be a function and $x \in X$. If there exists $U \in WGRaO(X)$ such that $x \in U$ and the restriction of f to U is almost contra wgra-continuous at x, then f is almost contra wgra-continuous at x.

Proof:

Suppose that $F \in RC(Y)$ containing f(x).Since f|U is almost contra wgra-continuous at x,there exists $V \in WGRaO(U)$ containing x such that $f(V)=(f|U)(V) \subset F$.Since $U \in WGRaO(X)$ containing x. It follows that $V \in WGRaO(X)$ containing x. Hence f is almost contra wgra-continuous at x.

Definition:3.22

A space X is said to be wgr α -T₁ if for each pair of distinct points x and y in X, there exists a wgr α -open sets U and V containing x and y respectively of X such that $y \notin U$ and $x \notin V$.

Definition:3.23

A space X is said to be wgra -Hausdorff if for each pair of distinct points x and y in X, there exists a wgra-open sets U and V containing x and y respectively of X such that $U \cap V = \phi$.

Theorem:3.24

If f:X \rightarrow Y is an almost contra wgra- continuous injection and Y is weakly Hausdorff, then X is wgra-T₁.

Proof:

Suppose that Y is weakly Hausdorff. For any distinct points x and y in Y, there exists $V, W \in RC(Y)$ such that $f(x) \in V$, $f(y) \in W$, $f(x) \notin W$, $f(y) \notin V$. Since f is almost wgra-continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are wgra-open subsets of X such that $x \in f^{-1}(V)$ and $y \in g^{-1}(W), y \notin f^{-1}(V), x \notin f^{-1}(W)$. This shows that X is wgra-T₁.

Definition:3.25

A topological space X is called wgra-ultra connected if every two non-void wgra-closed subsets of X intersect.

Theorem:3.26

If X is wgra-ultra connected and f:X \rightarrow Y is almost contra wgra-continuous and surjective, then Y is hyperconnected.

Proof:

Assume that Y is not hyper connected. There exists an open set V such that V is not dense in Y. Then there exists disjoint non-empty regular open subsets B_1 and B_2 in Y namely $B_1 = int(cl(V))$ and $B_2=Y-cl(V)$. Since f is almost contra-wgra continuous and surjective $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are disjoint non-empty wgra-closed subsets of X. Which is a contradiction to the fact that X is wgra-ultra connected. Hence Y is hyper connected.

Theorem:3.27

If f:X \rightarrow Y is almost contra wgra-continuous surjection and X is wgra-connected, then Y is connected.

Proof

Suppose that Y is not connected. Then there exists non-empty disjoint open sets V_1 and V_2 such that $Y=V_1 \cup V_2$. Here V_1 and V_2 are clopen in Y. Since f is almost contra wgra-continuous, $f^1(V_1)$ and $f^1(V_2)$ are wgra-open in X. Moreover $f^1(V_1)$ and

 $f^{1}(V_{2})$ disjoint and X= $f^{1}(V_{1}) \cup f^{1}(V_{2})$, which is a contradiction to the fact that X is wgra-connected. Hence Y is connected.

Definition:3.28

A space X is said to be

(i) wgra-closed if every wgra-closed cover of X has a finite subcover.

(ii) countable wgrα-closed if every countable wgrα-closed cover of X by wgrα-closed sets has a finite subcover.

(iii) wgra-Lindelof if every cover of X by wgra-closed sets has a countable cover.

Theorem:3.29

Let $f:X \rightarrow Y$ be an almost contra wgra-continuous surjection. Then the following statements hold.

(i) If X is wgra-closed compact then Y is nearly compact .

(ii) If X is wgrα-lindelof then Y is nearly lindelof.

(iii) If X is Countably wgra-closed compact, then Y is nearly countably compact.

Proof:

(i) Let { $V_{\alpha} : \alpha \in I$ } be any regular open cover of Y. Since f is almost contra wgr α -continuous, then { $f^{-1}(V_{\alpha}): \alpha \in I$ } is a wgr α -closed cover of X.Since X is wgr α -closed compact there exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}): \alpha \in I_0\}$. Therefore, we have $Y = \bigcup \{V_{\alpha}: \alpha \in I_0\}$. Hence Y is nearly compact.

(ii) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra wgra-continuous, $\{f^{-1} (V_{\alpha}) : \alpha \in I\}$ is a wgra-closed cover of X. Since X is wgra-lindelof, there exists a countable subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$, since f is surjective, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ is finite subcover for Y. Therefore Y is nearly lindelof.

(iii) Let $\{V_{\alpha} : \alpha \in I\}$ be any countable regular open cover of Y. Since f is almost contra wgra-continuous,then $\{f^{-1}(V_{\alpha}) : \alpha \in I\}$ is countable wgra-closed cover of X. Since X is countably wgra-closed compact, there exists a finite subset I_0 of I such that X= $\bigcup \{f^{-1}(V_{\alpha}) : \alpha \in I_0\}$. Since f is surjective, $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$ is finite subcover of Y. Therefore, Y is nearly countably compact.

Theorem:3.30

Let $f:X \rightarrow Y$ be an almost contra wgra-continuous and almost wgra-continuous surjection. Then the following statements hold.

(i) If X is mildly wgr α -closed compact, then Y is nearly compact .

(ii) If X is mildly countably wgrα-compact, then Y is nearly countably compact .

(iii) If X is mildly wgrα-lindelof, then Y is nearly compact.

Proof:

(i) Let $V \in RO(Y)$.Since f is almost contra wgra-continuous and almost wgra-continuous, $f^{1}(V)$ is wgra-closed and wgra-open in X respectively.Then $f^{1}(V)$ is wgra-clopen in X.Let{ $V_{\alpha} : \alpha \in I$ } be any regular open cover of Y.Then { $f^{1}(V_{\alpha}) : \alpha \in I$ } is a wgra-clopen in X.Since X is mildly WGRa-compact, there exists a finite subset I_{0} of I such that $X = \bigcup {f^{-1}(V_{\alpha}) : \alpha \in I_{0}}$.Since X is surjective, we obtain $Y = \bigcup {V_{\alpha} : \alpha \in I_{0}}$. Hence Y is nearly compact.

(ii) Let { $V_{\alpha} : \alpha \in I$ } be any countable regular open cover of Y. Since f is almost contra wgra-continuous and almost wgracontinuous surjection,,{ $f^1 (V_{\alpha}) : \alpha \in I$ } is countable wgra-closed cover of X. Since X is mildly countably wgra-compact, there exists a finite subset I_0 of I such that $X = \bigcup {f^1 (V_{\alpha}) : \alpha \in I_0}$. Since f is surjective, $Y = \bigcup {V_{\alpha} : \alpha \in I_0}$ is finite subcover for Y. Therefore Y is nearly Compact.

(iii) Let $\{V_{\alpha} : \alpha \in I\}$ be any regular open cover of Y. Since f is almost contra wgra-continuous and almost wgra-continuous surjection, $\{f^{-1}(V_{\alpha}): \alpha \in I\}$ is wgra-closed cover of X. Since X is mildly-lindelof, there exists a finite subset I_0 of I such that X=

 $\bigcup \{f^{-1}(V_{\alpha}): \alpha \in I_0\}.$ Since f is surjective, $Y = \bigcup \{V_{\alpha}: \alpha \in I_0\}$ is finite subcover of Y. Therefore, Y is nearly lindelof.

Theorem:3.31

Let f:X \rightarrow Y be an almost contra wgr α -continuous surjection, then the following properties hold:

(i) If X is wgrα-compact, then Y is S-closed.

- (ii) If X is countably wgra-closed, then Y is countably S-closed.
- (iii) If X is wgra-lindelof, then Y is S-lindelof.

Proof:

(i) Let {V_{α}: $\alpha \in I$ } be any regular-closed cover of Y.Since f is almost contra wgr α -continuous, {f¹(V_{$\alpha}:<math>\alpha \in I$ } is wgr α -open cover of X. Since X is wgr α -compact, there exists a finite subset I₀ of I such that X= \bigcup {f¹(V_{$\alpha}): <math>\alpha \in I_0$ }. Since f is surjective, Y= \bigcup {V_{$\alpha}:<math>\alpha \in I_0$ } is finite subcover for Y. Therefore, Y is S-closed.</sub></sub></sub>

ISSN 2347-1921

(ii) Let {V_a: $\alpha \in I$ } be any countable regular closed cover of Y. Since f is almost contra wgra-continuous,{f¹(V_a: $\alpha \in I$ } is countable wgra-open cover of X. Since X is countably wgra-compact, there exists a finite subset I_o of I such that X=

 \bigcup {f¹(V_a) : $\alpha \in I_0$ }. Since f is surjective, Y= \bigcup {V_a: $\alpha \in I_0$ } is finite subcover for Y. Therefore, Y is S-closed.

(iii)Let { $V_{\alpha}: \alpha \in I$ } be any regular-closed cover of Y. Since f is almost contra wgra-continuous,{ $f^{-1}(V_{\alpha}: \alpha \in I)$ } is wgra-open cover of X. Since X is wgra-lindelof, there exists a countable subset I_{0} of I such that $X = \bigcup {f^{-1}(V_{\alpha}): \alpha \in I_{0}}$. Since f is surjective, $Y = I_{0}$

 $\bigcup \{V_{\alpha}: \alpha \in I_0\}$ is finite subcover for Y.Therefore, Y is S-lindelof.

4. Approximately wgrα-Continuous Function

Definition:4.1

A map $f:X \to Y$ is said to be approximately wgra-continuous(ap-wgra-continuous) if $cl(int(F)) \subset f^{-1}(U)$ whenever U is an open subset of Y and F is a wgra-closed subset of X such that $F \subset f^{-1}(U)$.

Definition:4.2

A map $f:X \rightarrow Y$ is said to be approximately wgra-closed(ap-wgra-closed) if $f(F) \subset int(cl(V))$ whenever V is a wgra-open subset of Y, F is a wgra-closed subset of X and $f(F) \subset V$.

Definition:4.3

A map f:X \rightarrow Y is said to be approximately wgra-open(ap-wgra-open) if cl(int(F)) \subset f(U) whenever U is an open subset of Y,

F is a wgr α -closed subset of Y and F \subset f(U).

Definition:4.4

A map $f:X \rightarrow Y$ is said to be contra wgra-closed(resp.contra wgra-open) if f(U) is wgra-open(resp.wgra-closed) in Y for each closed(resp.open) set U of X.

Theorem:4.5

Let $f: X \rightarrow Y$ be a function, then

- (i) If f is contra α -continuous, then f is an ap-wgr α -continuous
- (ii) If f is contra α -closed, then f is an ap-wgr α -closed.

(ii) If f is contra α -open, then f is ap-wgr α -open.

Proof:

(i) Let $F \subset f^{-1}(U)$, where U is a open subset in Y and F is a wgra-closed subset of X. Then $cl(int(F)) \subset cl(int(f^{-1}(U)))$. Since f is contra α -continuous, $cl(int(F)) \subset cl(int(f^{-1}(U)) = f^{-1}(U))$. This shows that f is ap-wgra-continuous.

(ii) Let $f(F) \subset V$. Where F is closed subset of X and V is a wgra-open subset of Y. Therefore f(F)=int(cl(F)). Thus f is apwgra-closed.

(iii) Let $F \subset f(U)$. Where F is wgra-closed subset of Y and U is an open subset of X. Since f is contra- α -open. f(U) is α -closed in Y for each open set U of X. $cl(int(F)) \subset cl(int(f(U)))=f(U)$. Thus f is ap-wgra-open.

5.wgrα-Regular Graph and Strongly Contra wgrα-Closed Graphs

Definition:5.1

A graph G(f) of a function f:X \rightarrow Y is said to be WGR α -regular if for each (x,y) \in (X ×Y) – G(f), there exists a wgr α -closed set U in X containing x and regular open set V of Y containing y such that (U×V) $\bigcap G(f) = \phi$.

Definition:5.2

A graph G(f) of a function $f:X \rightarrow Y$ is said to be strongly contra wgra-closed if for each $(x,y) \in (X \times Y) - G(f)$, there exists a wgra-open set U in X containing x and regular closed set V of Y containing y such that $(U \times V) \bigcap G(f) = \phi$.

Theorem:5.3

Let $f:X \rightarrow Y$ be a function and let $g:X \rightarrow X \times Y$ be the graph function f, defined by g(x)=(x,f(x)) for every $x \in X$. If g is almost contra wgra-continuous function, then f is an almost contra wgra-continuous.

Proof:

Let $V \in RC(Y)$, then $X \times V = X \times cl(int(V)) = cl(int(X)) \times cl(int(V)) = cl(int(X \times V))$. Therefore, $X \times V \in RC(X \times Y)$. Since g is almost contra wgra-continuous, $f^{1}(V) = g^{-1}(X \times V) \in WGRaO(X)$. Thus, f is an almost contra wgra-continuous.

Definition:5.4

The graph G(f) of a function $f:X \to Y$ is said to be contra wgra-closed if for each $(x,y) \in (X \times Y) - G(f)$, there exists $U \in WGRaO(X,x)$ and $V \in C(Y,y)$ such that $(U \times V) \bigcap G(f) = \phi$.

Theorem:5.5

If f:X \rightarrow Y is almost contra wgra-continuous and Y is T₂,then G(f) is wgra-regular graph in X ×Y.

Proof:

Let $(x,y) \in X \times Y - G(f)$, it follows that $f(x) \neq y$. Since Y is T₂, there exists open sets V and W containing f(x) and y respectively such that $V \cap W = \phi$, we have $int(cl(V)) \cap int(cl(W)) = \phi$. Since f is almost contra wgra-continuous, $f^{-1}(int(cl(V)))$ is wgra-closed in X containing x. Take U= $f^{-1}(int(cl(V))$. Then $f(U) \subset int(cl(V))$. Therefore $f(U) \cap int(cl(W)) = \phi$. Hence G(f) is wgra-regular.

Theorem:5.6

Let f:X \rightarrow Y have a wgr α -regular graph G(f), if f is injective, then X is wgr α -T₁.

Proof:

Let x and y be any two distinct points of X.Then we have $(x,f(y)) \in X \times Y - G(f)$.By definition of wgra-regular graph, there exists a wgra-closed set U of X and $V \in RO(Y)$ such that $(x,f(y)) \in U \times V$ and $f(U) \cap V = \phi$. Hence $U \cap f^1(V) = \phi$. Therefore we have $y \in X - U$ and $x \notin X - U$. $X - U \in WGRaO(X)$ implies X is wgra-T₁.

Theorem:5.7

Let f:X \rightarrow Y have a wgr α -regular graph G(f), if f is surjective, then Y is weakly-T₂.

Proof:

Let y_1 and y_2 be two distinct points of Y. Since f is surjective $f(x)=y_1$ for some $x \in X$ and $(x,y_2) \in X \times Y - G(f)$. By the above lemma, there exists a wgra-closed set U of X and $F \in RO(Y)$ such that $(x,y_2) \in U \times F$ and $f(U) \cap F = \phi$. Hence $y_1 \notin F$. Then $y_2 \notin Y - F \in R(Y)$ and $y_1 \in Y - F$. Which implies that Y is weakly T_2 .

References

- [1] C.W.Baker,On contra almost β-continuous functions,Kochi J.Math.,1:1:8,2006.
- [2] D.A.Cannahan, Some properties related to compactness in topological spaces, Phd thesis, University Arkansas, 1973.
- [3] Dontchev J, Ganster M. Reilly II, More on almost s-continuity, Indian J. Math 1999;41:139-46.
- [4] J.Dontchev and M.Przemski, On various decomposition of continuous and some weakly continuous functions. Act Math. Hungar.,71;109;120,1996.
- [5] J.Dontchev, Contra continuous functions and Strongly S-closed mappings, Int. J.Math. Sci., 19:303:310, 1996.
- [6] J.Dontchev and T.Noiri, Contra semi continuous functions, Mathematica Panonica, 10(2): 159:168,1999.
- [7] E.Ekici, Almost contra precontinuous functions, Bull. Malayalam Math.Sci.Soc., 27:53: 65,2004.
- [8] Jafari S, Noiri T, Contra α-continuous functions between topological spaces, Iran In 2001:2(2):153-67.
- [9] A.Jayalakshmi, C.Janaki, On wgra-Closed Sets in Topological Spaces, Int. J.Math.Archieve 3(6), 2012, 2386-2392
- [10] A.Jayalakshmi,C. Janaki , On wgrα-Continuous functions in Topological Spaces, Int. J.Modern. Eng.Research, Vol.3:2,2013,857-863.
- [11] A.Jayalakshmi,C.Janaki ,On wgrα-Closed and wgrα-Open Maps in Topological Spaces, Int.J. Eng.Research and Appl.,Vol 3:2,2013,1-5.
- [12] N.Levine, A decomposition of continuity in topological spaces, Amer.Math. Monthly, 68;44;66,1961.
- [13] A.S.Mashhour and M.E .Abd El-Monsef and S.N. El-Deeb, α-continuous and α-open
- [14] O.Njastad, On some classes of nearly open sets, Pacific J. Math. 15(1965),961-970. mappings ,Acta Math. Hung, 41(3-4):213:218,1983.
- [15] T.Noiri,On δ-continuous functions,J.Korean Math.Soc.,16:161:166,1980.
- [16] Singal M.K, Singal A.R, Almost-continuous mappings Yokohama Math J 1968;16:63-73.
- [17] Singal M.K, Singal A.R and Mathur, On nearly compact spaces, BolUnione Mat Ital, 2;702:710,1969.
- [18] Soundarajan T.Weakly Hausdorff spaces and the cardinality of topological Spaces in general topology and its relation to modern Analysis and Algebra,III Proc.Conf.Kanpur 1968,Academia,Prague 1971,p.301-6.
- [19] D.Sreeja and C.Janaki, On Contra-πgb-Continuous functions and Approximately-πgb-Continuous functions in topological Spaces, Int. J.Stat.Mathematica,1:2,201146-51.

ISSN 2347-1921

- [20] R.Staum, The algebra of bounded continuous functions into a non archemedian field, Pacific J.Math., 50, 169-189, 1974.
- [21] L.A.Steen and Jr J.A.seebach, Counter examples in topology, A Holt.New York: Rienhart and Winston, 1970.
- [22] M.Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc , 41(1937),374-481.
- [23] A.Vadivel and K.Vairamanickam ,rgα-closed sets and rgα-open sets in topological spaces, Int. Journal of Math. Analysis, Vol.3,2009,no.37,1803-1819.

