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1. Introduction  

Many topologists studied various types of generalizations of continuity [4, 12, 13].In 1996, Dontchev[5] introduced contra-
continuous functions. Jafari and Noiri[8] introduced contra-α continuous functions. A new weaker form of function called 
contra semi continuous function is introduced and investigated by Dontchev and Noiri[6]. Contra β-continuous and contra 
almost β-continuous, almost contra pre-continuous, contra πgb-continuous functions were introduced by Baker[1], E.Ekici 
[7], D.Sreeja and C.Janaki[19]. 

The aim of this paper is to study the notion of contra wgrα-continuous,almost contra wgrα-continuous and its various 
characterizations are discussed. Also we study the basic properties of approximately wgrα-continuous functions and wgrα-
regular graph. 

2. Preliminaries 

Throughout this paper (X,τ) and (Y,σ) represent non-empty topological  spaces on which no separation axioms are 
assumed unless otherwise mentioned. For a subset A of a space (X,τ),cl(A) and int(A) denote the closure of A and the 
interior of A respectively. (X,τ) will be replaced by X if there is no chance of confusion.  

Definition:2.1 

A subset A of a space (X,τ) is called  

(i) α-open [14] if A int(cl(int(A))) and α-closed if cl(int(cl(A)))A. 

(ii) a regular open[22] if A=int(cl(A)) and a regular closed set if A=cl(int(A)). 

(iii) a regular α-open[23] if there is a regular open set U such that UAαcl(U). 

(iv) a weak generalized regular α-closed (wgrα-closed)[9]if cl(int(A))U whenever AU and U is regular α-open. 

The family of all α-open subsets of a space (X,τ) is denoted by  αO(X) and the collection of all α-open subsets of X 
containing of all α-open subsets of X containing a fixed point x is denoted by αO(X,x). 

Definition:2.2 

A function f:X→Y is called  

(i) wgrα-continuous [9] if for every f
-1

(V) is wgrα-closed in (X,τ) for every closed set V of (Y,σ).  

(ii) wgrα-irresolute [9] if for every f
-1

(V) is wgrα-closed in (X,τ) for every wgrα-closed set V of (Y,σ). 

(iii) contra-continuous [5] if f
-1

(V) is closed in X for each open set V of Y. 

(iv) regular set connected [3] if f
-1

(V) is clopen in X for every regular open set V of Y. 

(v) contra-α-continuous [8] if f
-1

(V) is α-closed in X for each open set V of Y. 

(vi) R-map[2] if f
-1

(V) is regular open in X for each regular open set V of Y. 

(vii) wgrα-open(resp.wgrα-closed)[11] if f(U) is wgrα-open(resp.wgrα-closed) in Y for each wgrα-open set (resp.wgrα-
closed)U of  X. 

(viii) almost continuous [16] if f
-1

(V) is open in X for every regular open set. 

(ix) perfectly continuous [18]if f
-1

(V) is clopen in X for every open set V of Y. 

Definition:2.3 

A topological space X is  

(i) wgrα-space[11] if every wgrα-closed set is closed. 

(ii) wgrα-T1\2 space[11] if every wgrα-closed set is α-closed. 

(iii) strongly -S-closed[5] if every closed cover of X has a finite sub-cover. 

(iv) mildly compact[20] if every clopen cover of X has a finite sub-cover. 

(v) strongly-S-lindelof[5] if every closed cover of X has a countable sub-cover. 

(vi) nearly Compact[17] if every regular open cover of X has a finite subcover. 

(vii) nearly-Lindelof [17] if every cover of  X by regular open sets has a countable subcover 

(viii) weakly Hausdorff[18] if each element of X is an intersection of regular closed sets. 

(ix) wgrα-connected [10] provided that X is not the union of two disjoint non-empty wgrα-open    

sets. 
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(x) wgrα-compact [14]if every wgrα-open cover of X has a finite subcover. 

(xi) hyper connected [21] if every open set is dense. 

3. Contra-wgrα-Continuous and Almost Contra-wgrα-Continuous 

Definition:3.1 

A function f: X→Y is called contra wgrα-continuous if f
-1

(V) is wgrα-closed set in X for every open set V of Y. 

Definition:3.2 

A function f: X→Y is called almost contra wgrα-continuous if f
-1

(V) is wgrα-closed set in X for every regular open set V of Y. 

Definition:3.3 

A function f:X→Y is called contra-rgα-continuous if f
-1

(V) is rgα-closed in X for each open set V of Y. 

Theorem:3.4 

Every contra continuous function is contra wgrα-continuous, but not conversely. 

Proof: 

It follows from the fact that every closed set is wgrα-closed. 

Example:3.5 

Let X=Y={a,b,c},τ={ϕ,X,{a},{c},{a,c}},σ={ϕ,X,{a,c}.f:X→Y defined by f(a)=b,f(b)=a and f(c)=c. Therefore f is contra wgrα-
continuous, but it is not contra continuous. 

Definition:3.6 

A space (X,τ) is called wgrα-locally indiscrete if every wgrα-open set is closed. 

Example:3.7 

Let X={a,b},τ={ϕ,X,{a},{b}}.Here the space (X,τ) is wgrα-locally indiscrete space. 

Theorem:3.8 

If a function f: X→Y is wgrα-continuous and (X,τ) is wgrα-locally indiscrete, then  f is contra continuous. 

Proof: 

Let V be an open set of (Y,σ).Then f
-1

(V) is wgrα-open in (X,τ) as f is wgrα-continuous. Since (X,τ) is wgrα-locally indiscrete, 
f
-1

(V) is closed in (X,τ). Hence f is contra continuous. 

Theorem:3.9 

Every contra wgrα-continuous function is almost contra wgrα-continuous, but not conversely. 

Proof: 

Since every regular open set is open, the proof follows. 

Example:3.10 

Let X=Y={a,b,c},τ={ϕ,X,{a},{b},{a,b}} and σ={ϕ,Y,{a},{a,b}}.Define the identity function f:X→Y. Therefore f  is almost contra 
wgrα-continuous, but it is not contra wgrα-continuous. 

Theorem:3.11 

If a function f:X→Y is almost contra wgrα-continuous, almost continuous and  X is Twgrα-space,then f is regular set 
connected. 

Proof;  

Let V be a regular open set in (Y,σ).Since f is almost contra wgrα-continuous and almost continuous,f
-1

(V) is wgrα-closed 
and open. Hence f

-1
(V) is clopen. Therefore f is regular set connected. 

Theorem:3.12 

For a function f:X→Y, the following properties are equivalent. 

(i) f is almost contra wgrα-continuous 

(ii) f
-1

(F)WGRαO(X) for every FRC(Y). 

(iii)For each xX and each regular closed set F in Y containing f(x), there exists a wgrα-open set U in X containing x such 
that f(U) F. 
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(iv) For each xX and each regular open set V in Y containing f(x), there exists a wgrα-closed set K in X  not containing x 
such that f

-1
(V)K. 

(v) f
-1

(int(cl(G)))WGRαC(X) for every open subset G of Y. 

(vi) f
-1

(cl(int(F)))WGRαO(X) for every closed subset F of Y. 

Proof: 

(i) (ii) 

Let FRC(Y).Then Y−FRO(Y) and by (i),f
-1

(Y−F)=X−f
-1

(F) is wgrα-closed in X. This implies that f
-1

(F) is wgrα-open set in 
X. Therefore (ii) holds. 

(ii) (i) 

Let G be a regular open set inY.Then Y−G is a regular-closed set in Y.By (ii),f
-1

(Y−G)=X−f
-1

(G) is wgrα-open in X. which 
implies that f

-1
(G) is wgrα-closed set in X. Therefore f is almost contra wgrα-continuous. 

(ii) (iii) 

let F be any regular closed set in Y containing f(x).By(ii),f
-1

(F)WGRαO(X,τ)and x f
-1 

(F). Take U=f
-1

(F).Then f(U) F. 

(iii) (ii) 

Let FRC(Y,σ) and x f
-1

(F).From(iii),there exists a wgrα-open set Ux in X containing x such that Ux f
-1 

(F).We have f
-

1
(F)= {Ux:x  f

-1
(F)}.Then f

-1
(F) is wgrα-open. 

(iii) (iv) 

Let V be any regular closed set in Y containing f(x).Then Y−V is a regular closed set containing f(x).By(iii),there exists a 
wgrα-openset U in X containing x suchthat f(U)Y−V.  Hence U f

-1
(Y−V)X−f

-1
(V).Then f

-1
(V)X−V.Take K=X−U.We 

obtain a wgrα-closed set in X not containing x such that f
-1

(V)K. 

(iv) (iii) 

Let F be a regular closed set in Y containing f(x). Then Y−F is a regular open set in Y not containing f(x). By (iv) there exists 
a wgrα-closed set K in X not containing x such that f

-1
(Y−F)K. This implies X−f

-1
(F)K, which implies f(X−K) F.Take 

U=X−K.Then U is a wgrα-open set in X containing x such that f(U) F. 

(ii) (v) 

Let G be a open set in Y. Then int(cl(G)) is regular open set in Y.which implies that Y−int (cl(G)) is regular-closed in Y.By(ii), 

f
-1

(Y−int(cl(G))) is wgrα-open in X. Therefore f
-1

(int( cl(G))) is wgrα-closed in X. 

(v) (vi) 

Let F be closed in Y.Then cl(int(F)) is regular-closed in Y and Y−F is open. By(v),f
-1 

( int (cl(Y−F))) is wgrα-closed set in 
X.We have 

 f
-1

(int(cl(Y−F)))=f
-1

(int(Y−int(F))) 

               =f
-1

(Y−cl(int(F))) 

                           =X−f
-1

(cl(int(F))). 

Hence, we obtain that f
-1

(cl(int(F))) is wgrα-open in X. 

(vi) (v) 

Let V be open in Y, then Y−V is closed,which implies that cl(int(Y−V)) is regular closed. By (iv) f
-1

(cl (int (Y−V))) is wgrα-
open in X.Therefore f

-1
(int(cl(V))) is wgrα-closed in X. 

Theorem:3.13 

(i) If a function f: (X,τ)→(Y,σ) is contra wgrα-continuous and (X,τ) is wgrα-T1\2-space,then f is contra α-continuous. 

(ii) If a function f: (X,τ)→(Y,σ) is contra wgrα-continuous and (X,τ) is Twgrα-space, then f is contra continuous. 

(iii) If a function f: (X,τ)→(Y,σ) is contra wgrα-continuous and (X,τ) is Twgrα-space, then f is contra rgα-continuous. 

Proof: 

(i) Let V be open in (Y,σ).By hypothesis,f
-1

(V) is wgrα-closed in (X,τ).Since X is wgrα-T1\2 space,f
-1

(V) is α-closed in X. 
Hence f is contra α-continuous. 

(ii) Let V be open in (Y,σ).By hypothesis,f
-1

(V) is wgrα-closed in (X,τ).Since X is Twgrα -space, f
-1

(V) is closed in X. Hence f is 
contra continuous. 
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(iii) Let V be open in (Y,σ).By hypothesis,f
-1

(V) is wgrα-closed in (X,τ).Since X is Twgrα -space,f
-1

(V) is rgα-closed in X. 
Hence f is contra rgα-continuous. 

Theorem:3.14 

Let f: X→Y be a function and let g:X→XY be the graph function of  f, denoted by g(x)=(x,f(x))  for every xX. If g is 
almost contra wgrα-continuous function, then f is almost contra wgrα-continuous. 

Proof: 

Let V be a regular closed set in Y, then  XV=X cl(int(V))=cl(int(X)) cl(int(V))=cl(int(XV)).  Therefore, XV is regular 
closed in XY. Since g is almost contra wgrα-continuous,then f

-1
(V)= g

-1
(XV) is wgrα-open in X. Thus f is almost contra 

wgrα-continuous. 

Theorem:3.15 

For two functions f: X→Y and g: Y→Z, let g f: X→Z is a composition function. Then the following properties hold: 

(i) If f is almost contra-wgrα continuous and g is an R-map, then g f is almost contra wgrα-continuous. 

(ii) If f is almost contra wgrα-continuous and g is perfectly continuous, then g  f is contra wgrα-continuous. 

(iii) If f is contra wgrα-continuous and g is almost continuous, then g  f is almost contra wgrα-continuous. 

Proof: 

(i) Let V be any regular open set in Z. Since g is an R-map, g
-1

(V) is regular open. Since f is almost contra wgrα-continuous,  

f
-1

(g
-1

(V))=(g f)
-1

(V) is wgrα-closed set in X. Therefore g  f is almost contra wgrα-continuous. 

(ii) Let V be open in Z, since g is perfectly continuous,g
-1

(V) is clopen in Y. Since f is almost contra wgrα-continuous, f
-1

(g
-1 

(V)) =(g f)
-1

(V) is wgrα-closed set in X. Therefore g  f is contra wgrα-continuous. 

(iii) Let V be any regular open set in Z. Since g is almost continuous,g
-1

(V) is open in Y. Since f is contra wgrα-continuous, 

f
-1

(g
-1

(V))=(g f)
-1

(V) is wgrα-closed set in X. Therefore g  f is almost contra wgrα-continuous. 

Theorem:3.16 

If f:X→Y is surjective wgrα-open(or wgrα-closed)and g:Y→Z is a function such that g  f:X→Z  is almost contra wgrα-
continuous,then g is almost contra wgrα-continuous. 

Proof: 

Let V be any regular closed (resp.regular open) set in Z.Since g  f is almost contra wgrα-continuous,(g f)
-1 

(V)=f
-1

(g
-1

(V)) is 
wgrα-open(resp.wgrα-closed),we have f(f

-1
(g

-1
(V)))=g

-1
(V) is wgrα-open. Therefore, g is almost contra wgrα-continuous. 

 

Theorem:3.17 

Let f:X→Y be a function and xX.If there exists AWGRαO(X) such that xA and the restriction of f to A is almost contra 
wgrα-continuous at x, then f is almost contra wgrα-continuous at x. 

Proof: 

Suppose fRC(Y) containing f(x),Since f |A is almost contra wgrα-continuous at x,there exists VWGRαO(A) containing x 
such that f(V)=(f |A)(V)F.Since AWGRαO(X) containing x, we obtain that VWGRαO(X) containing x,by theorem 
2.18. 

Theorem:3.18 

Suppose that wgrα-open sets are open under finite intersection. If f:X→Y is almost contra wgrα-continuous function and A 
is a wgrα open subset of X, then the restriction f |A :A→Y is almost contra wgrα-continuous 

Proof: 

Let FRC(Y).Since f is almost contra wgrα-continuous,f
-1

(F)WGRαO(X,τ).Since A is wgrα-open in X. It follows that (f|A)
-

1
(F)=A f

-1
(F)WGRαO(A,τ).Therefore f |A is almost contra wgrα-continuous.  

Theorem:3.19 

Let f:X→Y and g:Y→Z be function.Then the following properties hold. 

(i) If f is almost contra wgrα-continuous and g is regular set connected, then g  f:X→Z is almost contra wgrα-continuous 
and almost wgrα-continuous. 

(ii) If f is contra wgrα-continuous and g is regular set connected, then g  f:X→Z is almost contra wgrα-continuous and 
almost wgrα-continuous. 

Proof: 
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(i) Let VRO(Z).Since g is regular set connected, g
-1

(V) is clopoen in Y. Since f is almost contra wgrα-continuous, f
-1

(g 
-

1
(V)) = (g  f)

-1
(V) is wgrα-open and wgrα-closed. Therefore g  f is almost contra wgrα-continuous

 
and almost wgrα-

continuous. 

(ii) Let VRO(Z).Since g is regular set connected, g
-1

(V) is clopoen in Y. Since f is contra wgrα-continuous, f
-1

(g 
-1

(V))=     

(g  f)
-1 

(V) is wgrα-open and wgrα-closed. Therefore g  f is almost contra wgrα-continuous
  
and almost wgrα-continuous. 

Theorem:3.20 

If a function f:X→Y is almost contra wgrα-continuous ,almost continuous and X is Twgrα-space,then f is regular set 
connected. 

Proof: 

Let V be a regular open set in Y.Since f is almost contra wgrα-continuous and almost continuous,f
-1

(V) is wgrα-closed and 
open. Since X is Twgrα-space,f

-1
(V) is clopen.Hence f is regular set connected. 

Theorem:3.21 

Let f:X→Y be a function and xX.If there exists UWGRαO(X) such that xU and the restriction of f to U is almost 
contra wgrα-continuous at x, then f is almost contra wgrα-continuous at x. 

Proof: 

Suppose that FRC(Y) containing f(x).Since f|U is almost contra wgrα-continuous at x,there exists VWGRαO(U) 
containing x such that f(V)=(f|U)(V) F.Since UWGRαO(X) containing x. It follows that VWGRαO(X) containing x. 
Hence f is almost contra wgrα-continuous at x.  

Definition:3.22 

A space X is said to be wgrα -T1 if for each pair of distinct points x and y in X, there exists a wgrα-open sets U and V 

containing x and y respectively of X such that yU and xV. 

Definition:3.23 

A space X is said to be wgrα -Hausdorff if for each pair of distinct points x and y in X, there exists a wgrα-open sets U and 

V containing x and y respectively of X such that U V = . 

Theorem:3.24 

If f:X→Y is an almost contra wgrα- continuous injection and Y is weakly Hausdorff, then X is wgrα-T1. 

Proof: 

Suppose that Y is weakly Hausdorff. For any distinct points  x and y in Y,there exists V,WRC(Y) such that f(x)V, f(y)
W, f(x)W, f(y) V. Since f is almost wgrα-continuous, f

-1
(V) and f

-1
(W) are wgrα-open subsets of X such that x f

-1
(V) and 

yg
-1

(W),y  f
-1

(V),x f
-1

(W).This shows that X is wgrα-T1. 

Definition:3.25 

A topological space X is called wgrα-ultra connected if every two non-void wgrα-closed subsets of  X intersect. 

Theorem:3.26 

If X is wgrα-ultra connected and f:X→Y is almost contra wgrα-continuous and surjective,then Y is hyperconnected. 

Proof: 

Assume that Y is not hyper connected. There exists an open set V such that V is not dense in Y. Then there exists disjoint 
non-empty regular open subsets B1 and B2 in Y namely B1 =int(cl(V)) and B2=Y−cl(V). Since f is almost contra-wgrα 
continuous and surjective.f

-1
(B1) and f

-1
(B2) are disjoint non-empty wgrα-closed subsets of X. Which is a contradiction to the 

fact that X is wgrα-ultra connected. Hence Y is hyper connected. 

Theorem:3.27 

If f:X→Y is almost contra wgrα-continuous surjection and X  is wgrα-connected,then Y is connected. 

Proof 

Suppose that Y is not connected. Then there exists non-empty disjoint open sets V1 and V2 such that Y=V1 V2.Here V1 
and V2 are clopen in Y. Since f is almost contra wgrα-continuous,f

-1
(V1) and f

-1
(V2) are wgrα-open in X. Moreover f

-1
(V1) and  

f
-1

(V2) disjoint and X=f
-1

(V1) f
-1

(V2) , which is a contradiction to the fact that X is wgrα-connected. Hence Y is connected. 

Definition:3.28 

A space X is said to be 
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(i) wgrα-closed if every wgrα-closed cover of X has a finite subcover. 

(ii) countable wgrα-closed if every countable wgrα-closed cover of X by wgrα-closed sets has a finite subcover. 

(iii) wgrα-Lindelof if every cover of X by wgrα-closed sets has a countable cover. 

Theorem:3.29 

Let f:X→Y be an almost contra wgrα-continuous surjection. Then the following statements hold. 

(i) If X is wgrα-closed compact then Y is nearly compact . 

(ii) If X is wgrα-lindelof then Y is nearly lindelof . 

(iii) If X is Countably wgrα-closed compact, then Y is nearly countably compact. 

Proof: 

(i) Let {Vα :α I} be any regular open cover of Y. Since f is almost contra wgrα-continuous, then {f
-1

(Vα ):α I} is a wgrα-

closed cover of X.Since X is wgrα-closed compact there exists a finite subset I0 of I such that X= {f
-1

(Vα): α

I0}.Therefore, we have Y= {Vα:α I0}.Hence Y is nearly compact. 

(ii) Let {Vα :α I} be any regular open cover of Y. Since f is almost contra wgrα-continuous,{f
-1 

(Vα ):α I} is a wgrα-closed 

cover of X. Since X is wgrα-lindelof, there exists a countable subset I0 of I such that X=  {f
-1

(Vα): α I0},since f is 

surjective, Y= {Vα: α I0} is finite subcover for Y. Therefore Y is nearly lindelof. 

(iii) Let {Vα :α I} be any countable regular open cover of Y. Since f is almost contra wgrα-continuous,then {f
-1

(Vα ):α I} is 
countable wgrα-closed cover of X .Since X is countably wgrα-closed compact, there exists a finite subset I0 of I such that X=

 {f
-1

(Vα): α I0}. Since f is surjective,Y= {Vα:α I0} is finite subcover of Y.Therefore, Y is nearly countably compact. 

Theorem:3.30 

Let f:X→Y be an almost contra wgrα-continuous and almost wgrα-continuous surjection. Then the following statements 
hold. 

(i) If X is mildly wgrα-closed compact, then Y is nearly compact . 

(ii) If X is mildly countably wgrα-compact, then Y is nearly countably compact . 

(iii) If X is mildly wgrα-lindelof, then Y is nearly compact. 

Proof: 

(i) Let VRO(Y).Since f is almost contra wgrα-continuous and almost wgrα-continuous,f
-1

(V) is wgrα-closed and wgrα-open 
in X respectively.Then f

-1
(V) is wgrα-clopen in X.Let{Vα :α I} be any regular open cover of Y.Then {f

-1
(Vα ):α I} is a wgrα-

clopen in X.Since X is mildly WGRα-compact, there exists a finite subset I0 of I such that X= {f
-1

(Vα): α I0}.Since X is 

surjective,we obtain Y= {Vα:α I0}. Hence Y is nearly compact. 

(ii) Let {Vα :α I} be any countable regular open cover of Y. Since f is almost contra wgrα-continuous and almost wgrα-
continuous surjection,,{f

-1 
(Vα ):α I} is countable wgrα-closed cover of X. Since X is mildly countably wgrα-compact, there 

exists a finite subset I0 of I such that X= {f
-1

(Vα): α I0}.Since f is surjective, Y= {Vα: α I0} is finite subcover for Y. 

Therefore Y is nearly Compact. 

(iii) Let {Vα :α I} be any regular open cover of Y. Since f is almost contra wgrα-continuous and almost wgrα-continuous 
surjection, {f

-1
(Vα ):α I} is wgrα-closed cover of X . Since X is mildly-lindelof, there exists a finite subset I0 of I such that X= 

 {f
-1

(Vα): α I0}.Since f is surjective, Y= {Vα:α I0} is finite subcover of Y. Therefore, Y is nearly lindelof. 

Theorem:3.31 

Let f:X→Y be an almost contra wgrα-continuous surjection, then the following properties hold: 

(i) If X is wgrα-compact, then Y is S-closed. 

(ii) If X is countably wgrα-closed, then Y is countably S-closed. 

(iii) If X is wgrα-lindelof, then Y is S-lindelof. 

Proof: 

(i) Let {Vα:α I } be any regular-closed cover of Y.Since f is almost contra wgrα-continuous,   {f
-1

(Vα:α I} is wgrα-open 

cover of X. Since X is wgrα-compact, there exists a finite subset Io of I such that X= {f
-1

(Vα): α I0}.Since f is surjective, 

Y=  {Vα:α I0} is finite subcover for Y. Therefore, Y is S-closed. 
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(ii) Let {Vα:α I } be any countable regular closed cover of Y. Since f is almost contra wgrα-continuous,{f
-1

(Vα:α I} is 
countable wgrα-open cover of X. Since X is countably wgrα-compact, there exists a finite subset Io of I such that X= 

 {f
-1

(Vα) : α I0}. Since f is surjective, Y= {Vα:α I0} is finite subcover for Y. Therefore, Y is S-closed. 

(iii)Let {Vα:α I } be any regular-closed cover of Y. Since f is almost contra wgrα-continuous,{f
-1

(Vα:α I} is wgrα-open cover 

of X. Since X is wgrα-lindelof, there exists a countable subset Io of I such that X= {f
-1

(Vα): α I0}. Since f is surjective, Y= 

 {Vα:α I0} is finite subcover for Y.Therefore, Y is S-lindelof. 

4. Approximately wgrα-Continuous Function 

Definition:4.1 

 A map f:X→Y is said to be approximately wgrα-continuous(ap-wgrα-continuous) if cl(int(F)) f
-1

(U) whenever U is an open 
subset of Y and F is a wgrα-closed subset of X such that F f

-1
(U). 

Definition:4.2 

A map f:X→Y is said to be approximately wgrα-closed(ap-wgrα-closed) if f(F) int(cl(V)) whenever V is a wgrα-open 
subset of Y, F is a wgrα-closed subset of X and f(F)V. 

Definition:4.3 

A map f:X→Y is said to be approximately wgrα-open(ap-wgrα-open) if cl(int(F)) f(U) whenever U is an open subset of Y,  

F is a wgrα-closed subset of Y and F f(U). 

Definition:4.4 

A map f:X→Y is said to be contra wgrα-closed(resp.contra wgrα-open) if f(U) is wgrα-open(resp.wgrα-closed) in Y for each 
closed(resp.open) set U of X. 

Theorem:4.5 

Let f:X→Y be a function,then  

(i) If f is contra α-continuous, then f is an ap-wgrα-continuous 

(ii) If f is contra α-closed, then f is an ap-wgrα-closed. 

(ii) If f is contra α-open, then f is ap-wgrα-open. 

Proof: 

(i) Let F f
-1

(U), where U is a open subset in Y and F is a wgrα-closed subset of X.Then cl(int(F)) cl(int(f
-1

(U))). Since f is 
contra α-continuous,cl(int(F)) cl(int(f

-1
(U))=f

-1
(U). This shows that f is ap-wgrα-continuous. 

(ii) Let f(F)V. Where F is closed subset of X and V is a wgrα-open subset of Y. Therefore f(F)=int(cl(F))  .Thus f is ap-
wgrα-closed. 

(iii) Let F f(U).Where F is wgrα-closed subset of Y and U is an open subset of X. Since f is contra-α-open. f(U) is α-closed 
in Y for each open set U of X. cl(int(F)) cl(int(f(U)))=f(U). Thus f is ap-wgrα-open. 

5.wgrα-Regular Graph and Strongly Contra wgrα-Closed Graphs 

Definition:5.1 

A graph G(f) of a function f:X→Y is said to be WGRα-regular if for each (x,y) (X ×Y) – G(f) , there exists a wgrα-closed set 

U in X containing x and regular open set V of Y containing y such that (U×V) G(f)= . 

Definition:5.2 

A graph G(f) of a function f:X→Y is said to be strongly contra wgrα-closed if for each (x,y) (X ×Y) – G(f) , there exists a 

wgrα-open set U in X containing x and regular closed set V of Y containing y such that (U×V) G(f)= . 

Theorem:5.3 

Let f:X→Y be a function and let g:X→X×Y be the graph function f, defined by g(x)=(x,f(x)) for every xX. If g is almost 
contra wgrα-continuous function, then f is an almost contra wgrα-continuous. 

Proof: 

Let VRC(Y), then X×V=X×cl(int(V))=cl(int(X)) ×cl(int(V))=cl(int(X×V)). Therefore, X×VRC(X×Y). Since g is almost 
contra wgrα-continuous, f

-1
(V)=g

-1
(X×V)WGRαO(X).Thus, f is an almost contra wgrα-continuous. 

Definition:5.4 
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The graph G(f) of a function f:X→Y is said to be contra wgrα-closed if for each (x,y)(X ×Y) – G(f), there exists U

WGRαO(X,x) and VC(Y,y) such that (U×V) G(f)=  .  

Theorem:5.5 

If f:X→Y is almost contra wgrα-continuous and Y is T2,then G(f) is wgrα-regular graph in X ×Y. 

Proof: 

Let (x,y)X ×Y−G(f), it follows that f(x)≠y. Since Y is T2, there exists open sets V and W containing f(x) and y respectively 
such that V∩W=ϕ, we have int(cl(V))∩int(cl(W))=ϕ. Since f is almost contra wgrα-continuous, f

-1 
(int(cl(V))) is wgrα-closed in 

X containing x. Take U=f
-1

(int (cl(V)).Then f(U) int(cl(V)). Therefore f(U)∩int(cl(W))=  . Hence G(f) is wgrα-regular.  

Theorem:5.6 

Let f:X→Y have a wgrα-regular graph  G(f), if f is injective, then X is wgrα-T1. 

Proof: 

Let x and y be any two distinct points of X.Then we have (x,f(y))X×Y−G(f).By definition of wgrα-regular graph, there 

exists a wgrα-closed set U of X and VRO(Y) such that (x,f(y))U×V and f(U)∩V= . Hence U∩f
-1

(V)=  . Therefore we 

have yX−U and xX−U. X−UWGRαO(X) implies X is wgrα-T1. 

Theorem:5.7 

Let f:X→Y have a wgrα-regular graph  G(f), if f is surjective, then Y is weakly-T2. 

Proof: 

Let y1 and y2 be two distinct points of Y. Since f is surjective f(x)=y1 for some xX and (x,y2)X×Y−G(f). By the above 

lemma, there exists a wgrα-closed set U of X and FRO(Y) such that (x,y2)U×F and f(U)∩F= . Hence y1F. Then y2

Y−FR(Y) and y1Y−F. Which implies that Y is weakly T2. 
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