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ABSTRACT

In this paper, we introduce a bi-implication operator <> for intuitionistic fuzzy matrix and discuss several properties.
Further, we obtain sub-inverses and g-inverses of an intuitionistic fuzzy matrix using bi-implication operator.
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INTRODUCTION

After the introduction of fuzzy set theory by Zadah [13] in 1965, fuzzy concepts evolved in almost all fields. Thomason [11]
conceived fuzzy matrix theory and Sanchez [12] used it in fuzzy relational equations. Hiroshi Hasimoto [5] used implication
operator in fuzzy matrix theory and obtained results in sub-inverse of fuzzy matrix using fuzzy relational equation.
Atanassov [3] generalized fuzzy set theory to intuitionistic fuzzy set theory and as a consequence Im et.al.[4] extended it
to intuitionistic fuzzy matrix. Meenakshi and Gandhimathi [1,2] and Sriram and Murugadas [8,9,10] studied IFS and
extended it to intuitionistic fuzzy matrix. The authors [6] have studied bi-implication operator for IFS and in [7] dual
implication operator for IFM.

Definition 1.1. [3]

An Intuitionistic Fuzzy Set (IFS) A in E (universal set) is defined as an object of the following form A =
{X, ma (X), v 4 (X)) ] X € E}, where the functions: pa: E— [0,1] and va: E—> [0,1] define the membership and non-
membership function of the element x € E respectively and for every x € E : 0 < pay) + vay <1.

For simplicity, we consider the pair (x,x") as membership and non-membership function of an IFS with x+x' < 1.

An Intuitionistic Fuzzy Relation equation is an equation of the form Ax=b(xA=b), where A is an IFM and x and b are
intuitionistic fuzzy vector of compatible size with unknown x.

Definition 1.2. [9]
An intuitionistic fuzzy matrix (IFM) is a matrix of pairs A = ({aij,a;p) of non negative real numbers satisfying aj; + a;j <1 for

allij. Forany two elements A = ((a;a), B = ({by, bi'j )) € Fuxm, define

Av B = (<aij\/bij,a;j/\b;j>),

AAB = ((ay Abya Vb)), forall 1<i<mand 1<j<n.

1
Further A<B = a; < bjj and a}j > b;j for all i,j. Here Fnym denotes the set of all intuitionistic fuzzy matrices of order nxm and
Fnxn OF Fn denotes the set of all IFM of order nxn.

Definition 1.3. [7]

Let (a,a" , (b,b") e IFS define

0y if " <{(b,b'

(a,a) - (b,0’) = (10) l (a,a’) <(b,b")

(b,b") if(aa’) >(bb")
and (a,a’) <« (b,b") = ({(b,b"y —> (a,a’)). Here (a,a’) >(b,b") means a>b and a'< b'. Also (a,a’) # (b,b") means either a#b or
a'#b'.
Definition 1.4. [7]

' ' m ' '
Let A= <aij,aij> Ganm, B= <blj‘blj> e Frmxn define A.B = kV ((aik,aik> A <bkj’bkj >)an and for any C e Foxn.
=1

Letc’=1, C'=C, C*=C.C, ... C" = C™ C, if there exists a positive integer k such that C* = C*'* then we say C is
convergence of power.

Definition 1.5. [7]

Let AeFnm if B € Fmxn such that A.B.A = A then A is called regular, in this case B is called generalized inverse of A. If
A.B.A. <A, then B is called a sub-inverse of A.

Definition 1.6. [6]
Let (a,a", (b,b") € IFS define
(a,@") & (b,b")y = ((a,a’) « (b,b")) A ((a,a"y > (b,b")) that is

(b,b"y if(aa’) > (b,b")
(a,a") <> (b,b") = {(1,0) if(a,a’) =(bb")
(g,a") if(a,a'y <(b,b")

Easily (a,a") <> (b,b") =(b,b") <> (a,a") , (a,a’)=(b,b") means a=b and a'=b'.
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For (a,a",(b,b", (c,c") € IFS, the following Propositions and Lemmas hold.
Proposition 1.1. [6]
(a,a) <> (c,ch) A ((b,b)> (c,c)) < ((a,a’) «xb,b?).
Proposition 1.2. [6]
Let (a,a", (b,b’) € IFS, then
(a,a) A (a,a) <> (b,b") <(b,b?).
Lemma 1.1. [6]
((a,@’) A (b,b)) «(c,c) = ((a,a’) «(c,c)) A (b,b") «(c,c)).
Lemma 1.2. [6]
((aa) A(b,b?) —»(c,c)) = ((a,a) —(c,c)) v (b,b) —(c,c’)).
Lemma 1.3. [6]
(a,a’) v (b,b")) - (c,c) = ((a,a’y > {c,ch) A (b,b’y = (c,ch).
Lemma 1.4.[7] For intuitionistic fuzzy matrix AeFnm , (A<AT)'=AT5A.
Proposition 1.3. [6]
() (aa) A(b,b?)) <> (c,c) =[((b,b) «(c,c)) A (a.a) <> (c,cH))] v [(a.a) « (c,c)) A ((b,b) <> (c,c))]
(i) (aa’) v (b,b)) &> (c,c) =[((aa) «> (c,c)) A ((b,b) = (c,c))] v [(a,a) =(c,c)) A (b,b’) <> (c,cH)]
Proposition 1.4. [6]
() (aa) <> (c,ch) A (b,b) «>(c,c)) < ((aa) A (b,b)) & (c,c) < ((aa’) «(c,c)) v ((b,b)(c,c))
(i) (a@) < (c,c)) A (b,b) «>(c,c)) < ((a.a) v (b,b)) <> (c.c’) < ((a,a) «>(c,c)) v ((b,b) < (c,cH)
Proposition 1.5. [6]
If (a,a’y A (b,b") #{c,c') then
() (aa)a(b,b)) «>(c.c) = ((a,a) «>(c,c)) A (b,d) «>(c,c))
(i) (aa) v (b,b)) < (c,c’) = ((a,a) <> (c,c)) v ((b,b) <> (c,c))
Proposition 1.6. [6]

For {(c,c’) #(1,0), ({(a,a) A (b,b)) © (c,c) = ((a,a’) <> (c,c)h) A ((b,b") <> (c,ch) if and only if one of the following condition
holds

(i) When (a,a’) >(b,b", (b,b) = (c,c’)
(i) When (a,a") <(b,b", (a,a’) #(c,c’)
(i) When (a,a’y =(b,b")

Proposition 1.7. [6]

For {c,c’) = (1,0), ((a,a’) v (b,b)) < (c,c) = ((a,@) <> {c,ch) v ({(b,b’) <> (c,ch) if and only if one of the following condition
holds

(i) When (a,a’) >(b,b", (b,b) = (c,c’)
(i) When (a,a'y < (b,b"), (a,a") #(c,c"
(iii) When (a,a’y =(b,b")

Proposition 1.8. [7]

For any A € Fnm,

i A>A">1,

(i) A AT>1,

(i) (A—>A-A>A.
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2. BI-IMPLICATION OPERATOR &

Definition 2.1.

Let BeFmxn be a symmetric square matrix, if there exists AeFmxn such that B=A.A", then B is called realizable.
Definition 2.2.

Let A= (aij,a;p € Fy, if (a”,a;p > <aik,a;k> v <aki,a;4> , 1<i,k < n, then A is called diagonally dominant matrix.
Definition 2.3.

Let A=y, jj) € Frum, B =(bjj,bjj) € Fmn, define
AB = (AL (@i ai) < 0,0 D))

A-B = (AL (@ ai) = 0,0 )

AB = (A<B) A (A>B)

According to the definition A«>B = (A FL1((ajk, ajk) <> By ,b;q- Mo

Remark 2.1.

Generally for IFMs of compatible order A<>B = B-A.
This is illustrated through the following example.
Example 2.1.

For IFMs, A and B of compatible order

[ _((0.1,0.2) (0.1,0.3)
" 1(0.5,0.1) (0.4,0.2)

4 _[(03,02) (04, o.bj

(0.1,0.5) (0.10.6)

A Min((0.1,0.2),(0.1,0.5)) Min(¢0.1,0.2),(0.1,0.6))
Min((0.3,0.2),(0.1,0.5)) Min({0.4,0.1),(0.1 0.6))

A

(0.10.5) (0.1,0.6)

Min(¢0.1,0.2),(0.4,0.1)) Min({0.1,0.3),(0.4, o.2>)j
BA

B =
B =
~ (Min((0.10.5),(0.1,0.6)) Min((0.10.5),(0.1 0.6))

A - [(102) (0103
"~ 1(0.2,0.6) (0.1,0.6)

Bo

(
[
((0.1 0.5 (0.1, 0.6>J
[
[

Jtherefore AcB = BoA

Proposition 2.1.
Let AeFnxm, then
[ > IS a retriexive matrix A =y
Ao AT flexi trix (AeAT > |
1l > IS a symmetric matrix
i) A< A'is a symmetric matri
1] > IS a laempotent matrix
iii) A <> AT is a idempotent matri
\Y) > IS a power convergent matrix
iV)A & ATi t matri
(v) A AT is a diagonally dominant matrix
(vi) A & AT is realizable

Proof:
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(i) From Proposition 2.1
Ao AT=(ACAD A (AA) 2 Al =1,
Ao A >,
(i) (A AN =[(A > A) A (A AT]"
Ao A T=[(A> A A A AN
=[(A> AN A (A< A)
=[(A" < A) A (AT > A)] by Lemma 1.4.
=ATOA
(AAT) = AGA.
(iii) (AAT) . (AAT)

=N km:l (<aik ! a;k > < <ajk ! aljk >)) nxn 1% km:1 (<aik ' a;k > < <ajk ' a‘jk >)) nxn
=Vig (A km:1 (<aik ) ai‘k y (g, alfk ) AN km=1 (<afk ' a'fk ) <ajk ) aljk D)L
=V i (A (B, a;k ) <> (ag.ag)) A ((ajk:a}k> © (@g.ag)]

=V I (A e (&, ai'k> o (ag.an)) A(@jeaj) <> (@, alfk MN] o
By proposition (1.1)
((aik.aik) <> @ an)) A (@ ajk) <> (@n.an)) < (@ik.aik) <> (@jk.ajk)
1<k<m,1<i,jf<n.

Therefore (A©A") . (AoA")
<V A (B a0 © @, a‘jk N1) o

< (A (@, 350 © (@j,a30)) ma
Ao AYP<Ao A
On the other hand

Ao AN (Ao A) =V AL (5 8k © @noand) A@jea) <@g @k ) ]nn

A PLal@ik@ik) <> @jeaii) A (@ ajk) € @ik @)l = (A g (@ B ) € (418 ))) = A< AT
AoAY>AoAT

AoAY=AcA"

(iv) Can be got at once by (iii)

(v) Can be obtained at once by (i)

(vi) Can be verified immediately by (ii) and (iii).

Remark 2.2.

In general, for any A € Fnon, A<> A=A,

It is evident from the following example.

Example 2.2.

A - [(0102) (0.103)
" ((0.5,0.1) (0.4,0.2)
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A = [Min((10),(0.10.3)) Min((0.1,0.3),(0.1,0.3))
~ (Min((0.1,0.2),(0.4,0.2)) Min({0.1,0.3),(1, 0Y)

AA = [(0.1, 03) (0.1 0.3>j
(0.10.2) (0.10.3)

Easily to see A <> A = A. but we have conclusions of the following.

Proposition 2.2.

IfA= (ai]-,a;j> eFnxn is @ weakly reflexive matrix, that is for 1 <i, j<n, (ai]-,a;j> < (aya)
fori=forj=Kk, <ai]-,a}j> # (ag.ag) then A A<A

Proof:

Since A« A= (A R_a((@ik. aik) <> (@ 81g))nn hence A £_a((@ik, aik) > (@, a)) < (@iiai) < (@ )
= <aij,a;j> =A 1<, J <n.

Thus A A<A.

Proposition 2.3.

For any Ae Fny, if A is a reflexive matrix then

MNHA"A<A

(il A AT<A

Proof:

(i) Since A= In, (&, a5) = (1,0),1 <i<n AT A= AR (5,8 © (@, 8D < (@,a5) <> (@i, aip)) =
(" 7ailj ) =A

Therefore AT <> A<A.

(i) A > AT =( ARy 2k € (@, @5 ))) n € €020 (a0, < (@ay)

Therefore A <> AT < A.

Proposition 2.4.

For any Ae Fnym, if <ai]-,a}j> #(0,1),1<i<n,1<j<m, then A < I = ((0,1))nxm (the nXm zero matrix).
Proof:

Since Aoln = (AL ((@iai) <—><5|q':8i<j>)nxm

L0y i i)y = (i)

here 6-,6'- = .
W B.5) {(O,J) otherwise

Hence k/:\l((aik ) <> (6 ’51;1' )

(@i, 8g) <> (33j,81)) A (@2, 8i2) <> (82}, 82))). . . A (@85 <> B S A~ .. A
(<aimra£m> < <6mjv6Imj>) =(0,1)A(01)... «aijla;j) <> <6jj18'jj>) A...n{0,1)=(0,1)

A I =(0,1)
Proposition 2.5.

For any Ae Fnm, then
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HAA)A=A
(i) AA" & A) = A,
Proof:

Let (A <> AT) A= ((rj.rp)) , then
((NE (k/=\1(<aik LAy <> @ aljk ) (a;, ain )

= il (k;nz\l«a'ik ’ ailk> A4 <afk ' alfk >) AN <afj ,a'ﬁ >)

Thus

' m . . . m . \ . m \
(rprp) = (k/:\l«aik'aik) < (A, ax)) A{agj,ay)) v (k/:\l«aikvaik) < (A, A)) Afagj,a)) Vv ..V (k/:\1(<aik’aik> ©

(@nk:3nk?) A (@njsan))).

m ] Y l ' ' 1 l
By Proposition (1.2) for h = i, k/;l(<aik1aik>(_><ahkvahk>)/\<ahj1ahj>5 (@i aik) © (@njpan))) A @pjran) < <@ a5, yet
knAjl(((aik,a;k> <—><ahk,a}1k>)/\(ahj,a}1j>) = kn/\_ql«aij,a;j)) =<aij,a;j> . Thus (i) holds. Similarly, we can prove (ii).

APPLICATION ON INTUITIONISTIC FUZZY RELATION EQUATION
In this section, we study sub-inverse and g-inverse of IFM using bi-implication operator.
Proposition 3.1.

For any Ae Fmn, XA > A always has a solution A — AT,

Proof:

The proof is straightforward from proposition (1.8(iii)).

Proposition 3.2.

If A e Fnis an idempotent, then AX < A(XA < A) always has a solution A <> A.

Proof:

Since A is idempotent A% = A, [f\"fl«aik,a;m A <ak;'a'k,->>] = ((ay,ay)), hence (ayap = (@, 8; ) A{ay, &) <(a;,8;),

that is, A is weakly reflexive. By Proposition (2.2), A <> A <A. So A(A<>A) < AA = A’ = A. Consequently, AX <A, always
has a solution A<>A. Similarly, we can prove XA < A always has a solution A <> A also.

Proposition 3.3.

If B e Fnis weakly reflexive, then B < B

Proof:
n ' ' ' ' '
B?= [le((bik:biW A by .b|q>)J 2 ((bji, bji) A by, byp)) = Kby, b)) =B

The following corollary is evident from the above proposition (3.3).

Corollary 3.1.

The necessary and sufficient condition for A e F, is weakly reflexive and transitive.
Proposition 3.4.

For any A € Fam, AX = A, XA = A has a solution A" <> A, A <> A" respectively.
Proof:

Trivial by Proposition (2.5).
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Proposition 3.5.

For any A € F,, the following are equivalent.

i) Ais atransitive matrix.
i) AA> AN A<A.
i) A(AT < A) A<A.

Proof:
@i) = ().

If A < A, by Proposition (2.5)

AAOANA = A(AAT)A) = AA = A> < A. Similarly, we can prove the others. The proposition shows that (A <> A'),
(AT>A) are sub-inverses of A.

Proposition 3.6.

If AcF, is idempotent then both (A <> A"), (AT« A) are g-inverse of A.

Proof:

By Proposition (2.5), (A <> ANA = A, A(A< AA = AA = A. Thus, (A & A') is a g-inverse of A. Dually we can prove the
other.
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