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Abstract

This work is concerned with the study of the second order (linear) semiorthogonal B-spline wavelet method to solve one-
dimensional nonlinear Fredholm-Hammerstein integral equations of the second kind. Proof of the existence and
uniqueness solution for the two-dimensional Fredholm-Hammerstein nonlinear integral equations of the second kind was
introduced. Moreover, generalization the second order (linear) semiorthogonal B-spline wavelet method was achieved and
then using it to solve two-dimensional nonlinear Fredholm-Hammerstein integral equations of the second kind. This
method transform the one-dimensional and two-dimensional nonlinear Fredholm-Hammerstein integral equations of the
second kind to a system of algebraic equations by expanding the unknown function as second order (linear)
semiorthogonal B-spline wavelet with unknown coefficients. The properties of these wavelets functions are then utilized to
evaluate the unknown coefficients. Also some of illustrative examples which show that the second order (linear)
Semiorthogonal B-spline wavelet method give good agreement with the exact solutions.
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INTRODUCTION

This work includes one of important numerical methods called linear two-dimensional semiorthogonal B-spline wavelets
method, which is used to solve nonlinear two- dimensional Fredholm-Hammerstein integral equations of the second kind
and prove the existence and uniqueness solution of the nonlinear two- dimensional Fredholm-Hammerstein integral
equations of the second kind. The integral equations have important applications in many areas such as physics,
engineering and finance and appear in studies involving elastic contact problems, fracture mechanics, airfoil theory and
others. The theorems of the one-dimensional integral equations have various techniques and have increasing important
applications in different areas of science [1]. There are basically two reasons for this interest. In first, some cases, as in
the work of Abel on tautochrone curves, integral equations are the natural mathematical model for representing a
physically interesting situation. The second, and perhaps more common reason, is that integral operators, transforms, and
equations, are convenient tools for studying differential equations. Consequently, integral equation techniques are well
known to classical analysis and many elegant and powerful results were developed by them [5].

Wavelet is now an old story for signal and image processing specialists. In 1982, that a French engineer working on
seismological data for an oil company, Jean Morlet, proposed the concept of wavelet analysis to reach automatically the
beast trade-off between time and frequency resolution [9]. This is probably because the original wavelets, which were
widely used for signal processing, were primarily orthogonal. In signal processing applications, unlike integral equation
methods, the wavelet itself is never constructed since only its scaling function and coefficients are needed. However,
orthogonal wavelets either have infinite support or a nonsymmetrical, and in some cases fractal, nature. These properties
can make them a poor choice for characterization of a function. In contrast, the semiorthogonal wavelets have finite
support, both even and odd symmetry, and simple analytical expressions, ideal attributes of a basis function [3],[7]. In
recent years, numerous works have been focusing on the development of more advanced and efficient methods for
wavelet method such as in 1995 , Wagner and Chew, [10] solution of electromagnetic integral equations, in 2000, P.W.
Zhang and Y. Zhang,[11] boundary integral equation, in 2004, M. Lakestani M. Razzaghi, and M. Dehghan, [3] solution of
nonlinear Fredholm-Hammerstein integral equations by using semiorthogonal spline wavelets, in 2006, M. Lakestani, M.
Razzaghi, and M. Dehghan, [4]semiorthogonal spline wavelets approximation for Fredholm integro-differential equations,
in 2010, M. Rabbani, [8] Using two-dimensional multi-wavelet is constructed in terms of chebyshev polynomials for solving
two-dimensional Fredholm integral equations, in 2012, H. Derili, S. Sohrabi and A. Arzhang, [2] apply two-dimensional
Haar wavelets to solve linear two dimensional Fredholm integral equations.

1. GENERALIZATION OF TWO-DIMENSIONAL WAVELET AND SCALING FUNCTION:

This section extends the one-dimensional Semiorthogonal B-spline wavelet and scaling function results to multiple
dimensions.

A two-dimensional wavelet basis is arrived at by computing the tensor product of two one-dimensional wavelet basis
functions.

The two-dimensional approximation spaces V j 2 and orthogonal complements \W i 2 are defined as follows [6]:
Vv J.z =V, &V,
W jz'l =V, QW
W jz'z =W, ®V;
21
W, =" =W, ®W,
The two-dimensional wavelets and scaling function are defined by:

Bia (XY )=, (X) 44 (¥)

With 3 types of wavelets:
Wi (¥) =6 (), (y)
Wi (Y )= (X)), (y)
Wi (0¥ ) =i () w5 (V)

If the one-dimensional relatives are semiorthogonal similar relationships follow for the two-dimensional setting, since for
instance
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<'//j,k,l (X’y)'l//j,k',l‘(x’y»: T Tl//j,k,l (le)Wj,k',l'(Xfy)dXdy

—00 —00

Ul//,k Wi MIWH T y)dyj
= (Wi ()W 0O) - (wya (V ) ().

Thus one can immediately obtain the orthogonality relations between the subspaces [6]:
VZIWM, t=123
W J_2,1 1w jz,z
W jz,z W jz,s
W J_2,1 1w jz,s
W LW, j =i,s,t =123

The two-dimensional second order (linear) B-splines scaling functions are given by:

B (X y)=8, (x)¢,.(v)

The two-dimensional second order B-splines wavelets functions are defined with three types of wavelets.

The first types of wavelets are given by: (//:j!.,k,k‘ (X Y ) = ¢J2k (X )l//2 (y )

ik

The second types of wavelets are given by: l//jz’k - (X VY ) = l//jz.k (X )¢]2k (y )

The third types of wavelets are given by: l//j3’k K (X Y ) = V/;Z,k (X )l//2 (y )

For example, for j =2,k =—=1, k'=-1 the scaling function ¢520’_1’_1 (X Y ) is obtained by putting:
1 1

(2-4x)(1-4y), 0< xsz, 0<y SZ,

0, otherwise,

¢;§,71,71 (X1 Y) 5

FIGD) ¢y, . (X,Y)

For example, for j =2,k =-=1, k'=-1 and t =1 the wavelet function ‘//;,—1,—1 (X Y ) is obtained by putting:
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l//:ZL,—l,—l (X Y ) =

|-

(1-4x)(-6+92y),  0<x s%, 0<
11
(1-4x)(14-68y), 0<x SZ, gs
1 1
(1-4x)(-10+28y), 0<x SZ, ZS
(1-4x)(2-4y),  0<x<3, 3¢
4 8
0, otherwise,

<

<

<

<

FIG (@ vy, 1 (X,Y)

A IA
[o el

IA

IA
NIF olw N+~
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For example, for j =2, k=—=1, k'=-1 and t =2 the wavelet function ‘//22,1,—1 (X Y ) is obtained by putting:

‘//22,1,—1 (X, y) =

ol
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(4x-1)(1-4y),
(11-28x)(1-4y),
(-35+64x)(1-4y),
(45-64x)(1-4y),
(~24+28x)(1-4y),

(4-4x)(1-4y),

0,

lstg,OSyﬁl,
4 8 4
§SXSE,OSySE,
8 2 4
1£x£§,03y£1,
2 8 4
§SXS§,0SySl,
8 4 4
ESXSZ,OSysl,
4 8 4
Zstl,Os Y; Sl,
8 4
otherwise,
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FIG@3) wa, 1(X,Y)

2. FUNCTION APPROXIMATION:

A function f (X VY ) defined over [0,1] may be represented by B-spline wavelets and scaling functions as [2]:

f(Xy zzckk¢2kk Xy Zzzdjkk‘//,kk y)"‘

K=1k =1 i=2| Ke—1k —1
. (41)
212 3 ) _p 9l _
szj,k,k‘/ﬂkk szjkkl/ljkk Xy)}
k1K= Ko1K '=t

Where ¢2°’k]k.(x,y) and y/‘j’k'k.(x,y), t =1,2,3 are two-dimensional scaling and wavelets functions,
respectively.

If the infinite series in (4.1) is truncated, then (4.2) can be written as:

M ]
chkk¢2kk Xy+z szjkkl//]kk Y)+

=-1K '=-1 j=2| k=—1k '=—1
Ll .. (42)
szjka/Jkk szjkk‘//Jkk XY)}
Ko1K —1 — 1 K
Where C and W(x,y ) are (Z(M & —I—l)2 x 1 vectors are given by:
C :[071,71’071,01 1C33|d21 T 1d2132vd22-1,71’ ’d2223’d23-1,-11-"vd2322’dsl 1o ’d3136’
d321_1'_11'-'5d3%5’31d§_1'_11'-"d\’is’sid[a1_1'_11 1d,]\;| M 21d|\3|'_1,_15 ’dl\zll M 231d[§/|'_11_15 ld;l M _goM 2i|
.. (43)
[¢2 1 1(X Y) 9, 10(X Y) ----- ¢20,3,3(X Y) Yo 1(X y) ----- Vlgsz(x Y)
Vaaa (Y )oonWas (Y W20 (XY )t (XY ) W00 (XY )i
W;.s,e(xny)vl//sz,-l,-l(x’y)v-w%%e,s (X’y)"//33,-1,-1()(’Y)*'“v‘//g,ﬁ,s(va)”//#/l ,-1,-1(X’Y)
""’V/iA ,3,2M72(X'y)"//'\2/| flﬁl(x’y)""’y/; ,2M72,3(X’y)"//'?/| ,71,—1("’3’)’---’@//; ,2M72,2M72(X’y)}
. (4.4)
With
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(. :Mf (x,y)¢2’k’kl(x,y)dxdy, k,k'=-10,.,3 ... (4.5)

_1

11
d:‘k‘:”f (x,y)l//j‘k‘k‘(x,y)dxdy, j=23..M,
00

11 ~
d?. :”f (x,y)l//jkk,(x,y)dxdy, i=23..,M, ... (4.6)
00 o

k=-10,.,2' -2,k'=-10,..,3,

'=-1,0,..,2" -2,

-0 _t
Where ¢2’k’k.(x,y) and wj’k’k.(x,y), t=12,3 are dual functions of ¢2°’k’k.(x,y) and

Wi (X,Y), t=1,2,3 respectively.

These can be obtained by linear combinations of the following:
S (Xoy), k,k'=-10,..,3,
Vi (xy), 1=23..M,k =-10,.,3 k'=-10,..,2" -2,

X,Y)
vl (X)), §=23..M,k=-10,.,2" -2,k '=-10,..,3, and
X,Y)

v (%,Y), 1=23..M, k,k'=-10,..,2" —2, asfollows.
Let
O =[#, (X,Y) B (X,Y ) Bas (X.¥) ]| . (a)
Y= [‘//;_1,_1 (XY ) 0500 (XY )W g, (XY )T .. (4.8)
v = |:l//22,—1,—1 (XY ) Ws 00 (XY )sents w5 (X0 )T . (4.9)
3. |:l//§_1y_1 (Y ) W5 00 (X0 Y )seo ¥ g o 5 (XY )T .. (4.10)

Using (4.7) we get:
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@°(x,y)(@°(x,y)) dxdy = p°

O ey
O ey

—ep ooh 0-p 0p, 0P,
2_];1'p1 %'pl 2_];1'p1 0-p, O-p
p°=|0-p, 2—14-|ol %pl 2—14-|o1 0-p,
0B, 0P B TP P
op 0, B ZP, 2—14p

1
Where P, :ICD(X )@ (x )dx.
0

Using (4.8) we get:

1,

1 P,

1

24 P2
11 T
H‘Pl(x,y)(‘lﬂ(x,y)) dxdy = p*=[0-p,
00

O'pz

0-p,

1
Where p, =I‘P(x )P (x )dx.
0

Using (4.9) we get:
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... (4.11)
O'pz
0-p, O-p,
.p2 0p2 \
1
P, ﬂ'pz
1
- p, ﬂ.pz_
... (4.12)
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jjqﬂ(x’Y)(qﬂ(X,y))dxdy =p2=

T

Using (4.10) we get:

O ey
O t—

T

W2 (x,y ) (W (x,y ) dxdy = p® =

ISSN 2347-1921

2 1 -1 T
= —=. . 0- 0- 0-
T m p, 862 p, P, P, P,
9% ' 16 ' 432 "' 864 '* ! !
864 ' 432 't 16 ' 432 "' 864 't !
! 864 ' 432 't 16 't 432 "' 864 !
! ! 864 ' 432 't 16 't 96 *
-1 1 2
0- 0- 0- . - <.
i Py Py Py 864 Py 96 P1 27 pl_
2 1 o T
£ Sall o=} 0- 0- ... 0
7 P o5 PR P2 P, P, P,
9% > 16 > 432 ' 864 '’ i 2
864 '° 432 7 16 '° 432 "° 864 ' ° £
1 864 '° 432 "7 16 '° 432 " 864 '’
: g 864 72 232 P2 6P gg P
-1 1 2
0- 0- 0- F - B e .
pZ pZ p2 864 p2 96 p2 27 p2

... (4.13)

.. (4.14)

Where p°, p*, p? and p° are 25x 25, (5(2M ! —4))><(5(2M = —4)), (5(2M & —4))><(5(2M e —4)) and

(ZM g 2! 4)2 X (ZM i 4)2 matrices, respectively.

~ON=LN=2 ~3

Suppose @, ¥, ¥ and ¥ are the dual functions of @°, P*, W2 and V'3, respectively, given by:

0

O =

882 |

0 0

1 1

2 2

3 3

Page

0

&52,1,1(x,y>.&52,1,o(x,y),...,&>2,3,3<x.y)}

1

T
Vo 1,1 (X Y )"//2,71,0 (X Y ),---, Wo3,oM 2 (X Y )}

2

T
Vo1 (X Y )’l//z,fl,o (X Y ),---, YoM 23 (X Y )}

3

T
= Va1 (X Y )'l//z,fl,o (X Y ),---. WM _ooM _» (X Y )}
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Using (4.5)-(4.10), and (4.11)-(4.14) we have:

-
-

0

® (@° )dedy =1,,

"6»—\

(‘Pl)dedy =1,
.. (4.19)

v (¥?) dxdy =1,

N

1
w

(‘P3 )dedy =1,

Ot O O 2 O ey
Ot P O 2 O 2 O Sy

Where I,,1,,1,, and I, are 25x 25, (5(2M+1 —4))><(5(2M+1 —4)) , (5(2M+1 —4))><(5(2M+1 —4)) and
(ZM - 4)2 X (ZM i 4)2 identity matrices, respectively.

Then (4.47)-(4.50), and (4.55) give:

Ci) :(po)ich)O,
-1 4 ... (4.20)
“P :(p1) \Ply
P o=(p7) ¥
\i_, :(ps)’l\ys’
3. TECHNIQUE SOLUTION OF NONLINEAR TWO DIMENSIONAL FHIE's:
According to this technique one can solve nonlinear two-dimensional FHIE's of second kind of the form:
11
u(x,y)=f (x,y)+”k (x,y.t,s)g(t,s,u(t,s)ptds, (x,y)eD =[0,1]x[0,1]
00
....(5.1)
by using two-dimensional B-spline wavelet. For this purpose, we first assume:
z(x,y)=g(t,s,u(t.;s)), (x,y)eD=[0,1]x[0,] .. (5.2)
Now using (4.38) to approximate U (X Y ), Z (X VY ) as
u(x,y)=B"¥(x,y), z(x,y)=E"¥(x,y) ... (5.3)

Where ‘P(X Y ) is defined in (4.5)and B, E are (Z(M ) +1)2 x1 unknown vectors defined similarly to C in (4.3).
Also expand f (X VY ), k (X Y ,t,S) by two-dimensional B-spline dual wavelets Wy defined as in (4.15)-(4.18) as:

f (x,y):AT\iJ(x,y), k(x,y,t,s):\il(t,s)(alil(x,y), ... (5.4)
Where A is (Z(M ) +1)2 x1 known vectors defined as:

AT =f (x,y)¥'(x,y) ... (5.5)
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And O is (Z(M ) +l> X(Z(M ) +1) known matrix given by:

11(11
”{”k (X,y.t,s) ts)dtds} (x ,y)j dxdt ... (5.6)
00LO0O
From (5.2), (5.3), and (5.4) we get:

11
”k X,y.t,8)g t,s,uts dtds ” TlI’ts‘PTts)@‘P(x y)dtds
00

00

- ET“j"{'(t,s)‘PT(t,s)dtds O¥(x,y)

ETG)‘i’(x,y)

... (6.7)
Applying (5.2)-(5.7) in (5.1), we get:

BT‘P(x,y):AT‘i’(x,y)+ET®‘i’(x,y); ... (5.8)
Multiplying (5.8) by W' (X, Y )

B (X, Y)W (X,y) = AT (x,y ¥ (x,y ) +E O (x,y )W (x.y)

Integrating from O to 1,

11 11 3 11 L
”BT‘P(x,y)‘PT(x,y)dxdy =”AT‘P(x,y)\PT(x,y)jxdy +”ET®‘P(x,y)‘PT(x,y)1xdy
00 00 00

11 11 _
BT”‘P(x,y)‘PT(x,y)dxdy =AT”‘P(x,y)‘PT(x,y):ixdy +E'®
00 00

O

1

I X,y )P (x,y Hxdy

0

B'Tp=A"+E"®

B'p-E'®@=A" ... (5.9)

11
pZ”‘P X,y )¥T(x,y )dxdy = , |- ... (5.10)
00

To find the solution y(x, y) in (5.3), we first calculate the following equation in X; = i/2M +1 vy = i/2M9 1.

g(xy,B"¥(xy))=E"¥(xy) .. (5.11)
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Equation (5.9) generates a set of [Z(M ) +l} algebraic equations. The total number of unknowns for vectors B and
2

E in(5.3)is 2|:2(M ) +1:| . these can be obtained by using (5.9) and (5.11).

4. ILLUSTRATIVE EXAMPLE:
Example:

Consider the equation

11
u(x,y)=x? +%y (7+et+e? —e‘3)—3+”ty et t*)gtgs,
00

Exact solution of this problem is U (X VY ) =x? +2Yy —3. the solution for U (X ) y) is obtained by the method in
section 5. The computational results for M =2, and M =4 together with the exact solution

u(x,y)=x?2+2y —3 are given in Table 6.1.

Table 6.1. Exact and approximate solutions.

(x,y) Approximate Approximate Exact
M=2 M=4
(0,0) -3.0100 -3.0000 -3.0000
(0,0.25) -2.5784 -2.6001 -2.6000
(0,0.5) -2.3287 -2.0001 -2.0000
(0,0.75) -1.6909 -1.5998 -1.6000
(0,2) -1.1761 -1.0000 -1.0000
(0.25,0) -2.9203 -2.9600 -2.9600
(0.25,0.25) -2.5692 -2.5602 -2.5600
(0.25,0.5) -1.9332 -1.9601 -1.9600
(0.25,0.75) -1.6265 -1.5599 -1.5600
(0.25,1) -1.0565 -0.9602 -0.9600
(0.5,0) -2.6710 -2.7499 -2.7500
(0.5,0.25) -2.3061 -2.3501 -2.3500
(0.5,0.5) -1.7276 -1.7502 -1.7500
(0.5,0.75) -1.3716 -1.3502 -1.3500
(0.5,1) -0.8098 -0.7499 -0.7500
(0.75,0) -2.4010 -2.5099 -2.5100
(0.75,0.25) -2.0281 -2.1101 -2.1100
(0.75,0.5) -1.4696 -1.5101 -1.5100
(0.75,0.75) -1.0965 -1.1099 -1.1100
(0.75,1) -0.5376 -0.5102 -0.5100
(1,0) -1.8477 -2.0001 -2.0000
(1,0.25) -1.4762 -1.5998 -1.6000
(1,0.5) -0.9140 -1.0002 -1.0000
(1,0.75) -0.5441 -0.6000 -0.6000
(1,2 0.0004 0 0
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FIG (4) M2

FIG (5) M4

exat] sohuon

FIG (6) exact solution
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CONCLUSION:

Generalize the two-dimensional second order (linear) semiorthogonal B-spline wavelet to solve two-dimensional nonlinear
FHIE’s of the second kind. Introduce numerical examples which give a good agreement with exact results.
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