

Multi G –cyclic Operators are G-cyclic

Zeana Z. Jamil University of Baghdad – College of Science – Dept. of Mathematics Zeana.zaki@scbaghdad.edu.iq

ABSTRACT

Paris proved in 2001 Herrero's conjectured "that every multi-hypercyclic (multi- supercyclic) operator on a Hilbert space is in fact hypercyclic (supercyclic)".

In this paper we study this conjectured in many cases of operators between hypercyclic operators and supercyclic operators. And we proved that multi *G*-cyclic operator is *G*-cyclic operator.

Keywords

Hypercyclic operators; supercyclic operators.

SUBJECT CLASSIFICATION

Mathematics Subject Classification: 47A16, 47B37.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 8, No 3 editor@cirjam.org www.cirjam.com, www.cirworld.com

ISSN 2347-1921

INTRODUCTION:

Let *H* be an infinite dimensional separable complex Hilbert space, and let B(H) be the Banach algebra of all bounded linear operators on *H*. Let $T \in B(H)$, it is called hypercyclic if there is a vector x in *H* such that the set $orbt(T,x) \coloneqq \{T^n x; n \ge 0\}$ is norm-dense in *H* [1]. An operator *T* is supercyclic if there exists an $x \in H$ such that $Sorbt(T, x) \coloneqq \{\alpha T^n x; n \ge 0, \alpha \in \mathbb{C}\}$ is norm-dense in *H* [1].

T is called multi-hypercyclic if there is a set of vectors $\{x_i\}_{i=1}^n$ in *H* such that the set $\bigcup_{i=1}^n orbt(T, x_i)$ is norm-dense in *H* [2]. An operator *T* is multi-supercyclic if there exists a set of vectors $\{x_i\}_{i=1}^n$ in *H* such that $\bigcup_{i=1}^n Sorbt(T, x_i)$ is norm-dense in *H* [2].

In 1999, Herrero conjectured that every multi-hypercyclic (multi-supercyclic) operator is hypercyclic (supercyclic) [1]. Peris in 2001 settle this conjecture in the affirmative even for continuous linear operator [2].

In 2005, Naoum and Jamil introduced *G*-cyclic operator, an operator *T* is called *G*-cyclic over a multiplication semigroup of \mathbb{C} with 1, if there exists a vector *x* such that *Gorbt*(*T*,*x*) := { $\alpha T^n x$: $n \ge 0, \alpha \in S$ } is norm dense in *H*, such a vector is called *G*-cyclic vector for *T* over *S* [3].

It is easy to see that every hypercyclic operator is G- cyclic operator, and every G- cyclic operator is supercyclic

In this paper we introduce the concept multi *G*-cyclic operator, *T* is called multi *G*-cyclic operator if there exists a finite set of vectors $\{x_i\}_{i=1}^n$ in *H* such that $\bigcup_{i=1}^n Gorbt(T, x_i)$ is norm-dense in *H*. We prove that every multi *G*-cyclic operator is *G*-cyclic operator.

Main result:

First we need the following lemmas. Since every G-cyclic operator is supercyclic then we get:

Lemma 1:

If $T \in B(H)$ is multi G-cyclic, then T^* has at most one eigenvalue

Lemma 2:

Let $T \in B(H)$, then $int[Gorbt(T,x)] \cap int[Gorbt(T,y)] \neq \emptyset$ if and only if int[Gorbt(T,x)] = int[Gorbt(T,y)].

Proof:

 $\Rightarrow) \quad \text{Since } int[Gorbt(T,x)] \cap int[Gorbt(T,y)] \neq \emptyset, \text{ we find } n \in \mathbb{N}, \quad \alpha \in \mathbb{C} \text{ such that}$

 $\alpha T^{n} \mathbf{x} \in int[Gorbt(T, \mathbf{x})] \cap int[Gorbt(T, \mathbf{y})] \subseteq Gorbt(T, \mathbf{y}). \text{ Since } \overline{Gorbt(T, \mathbf{y})} \text{ is}T-\text{invariant, then } \alpha T^{k} \mathbf{x} \in \overline{Gorbt(T, \mathbf{y})},$

for all $k \ge n$. Thus $int[Gorbt(T,x)] = int[\{\alpha T^k x | \alpha \in S, k \ge n\}] \subseteq int[Gorbt(T,y)]$ By the same argument we get the other inclusion.

Before we prove our main result, we list without proof some facts which will be frequently used in the proof.

Observations 3:

⇐) Clearly

- 1. Let X be a topological space and F_1, \dots, F_n a finite family of closed subsets of X such that $X = \bigcup_{i=1}^n F_i$. If $int(F_1) = \emptyset$ then $X = \bigcup_{i=2}^n F_i$.
- 2. Let X be a topological space, $A \subset X$, and F a closet subset of X with $int(F) = \emptyset$. Then $int(\overline{A}) = int(\overline{A F})$.
- 3. If D is an complex Housdorf local convex space A and us a proper subspace, then D A is connected.
- 4. Any subspace of *H* containing a non-empty open set must be all of *H*.
- 5. Let **P** be a complex polynomial, P(T) has dense range if and only if $P(\lambda) \neq 0$ for every eigenvalue λ of T^* .

6. Now we are ready to state and prove the main theorem.

Theorem 4:

If $T \in B(H)$ is multi *G*-cyclic operator, then *T* is *G*-cyclic operator.

Proof

Since *T* is multi *G*-cyclic, then there exists a finite set $\{x_i\}_{i=1}^n \subset H$ such that $H = \bigcup_{i=1}^n \overline{Gorbt(T, x_i)}$ and *n* is minimal. We define $F_i = \overline{Gorbt(T, x_i)}$; $1 \le i \le n$. If n = 1, *T* is *G*-cyclic. Now, if n > 1, then by ((3), part (1)) and the minimality of *n*, $int(F_i) \ne \phi$ for all i; $1 \le i \le n$. By (2) given any $u \in H$ with $int[\overline{Gorbt(T, y)}]$ is not empty.

 $int[Gotbt(T,y)] = int F_i \text{ for some } i; 1 \le i \le n.$ (1)

Moreover,

 $int[Gotbt(T,y)] \subseteq int[Gotbt(T,y)]$ (2)

Otherwise, there are $m \in \mathbb{N}$, $\alpha \in S$ such that $\alpha T^m y \in F_i$ for some $j \neq i$. And by ((3), part (2)), $intF_i = int[Gorbt(T,y)] = int[\{\alpha T^k y | \alpha \in S, k \ge m\}]$, thus $intF_i \subseteq intF_j$, a contradiction. Since T^* has one possible eigenvalue, say λ , then let $P \neq 0$ be a polynomial in T such that $P(\lambda) \neq 0$. By ((3), part (5)) P(T) has dense range, thus $H = P(T)(H) = \bigcup_{i=1}^n P(T)(F_i)$. Since $P(T)(F_i) = Gorbt(T, P(T)x_i)$ and the minimality of n, then $int[Gorbt(T, P(T)x_i)] \neq \phi$ for all i; $1 \le i \le n$. So by $\{T^n P(T)x_i | n \ge 0\} \subseteq int[Gorbt(T, P(T)x_i)] \stackrel{(1)}{=} int[F_j(i)]$, with $j(i) = \{1, 2, \cdots, n\}$ and $i = 1, 2, \cdots, n$. Then $C := \bigcup_{P(\lambda)\neq 0} orbt(T, P(T)x_1) \subseteq \bigcup_{i=1}^n int(F_i)$. Now observe that $C = span orbt(T, x_1) - (T - \lambda I)(H)$. Thus by ((3), part (3)) C is connected, hence $C \subseteq int(F_1)$. By ((3), part (4)) C is dense, then $H = \overline{C} \subseteq F_1$. Therefore T is G-cyclic operator.

References:

- [1] D. A. Herrero, Hyperc yclic operators and chaos, J. Operator Theory 28 (1992), pp. 93-103
- [2] Peris, Multi-hypercyclic operators are hypercyclic, Math. Z. 236, (2001), pp. 779–786
- [3] G. Naoum, Z. Z. Jamil, G-cyclicity, Journal of Al-Nahrain University, 8(2), (2005), pp. 103-108.