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Abstract 

In this article, we consider a continuous review perishable inventory system with poisson demands. The maximum storage 

capacity at lower echelon (retailer) is S and the upper Echelon (Distribution Center) is M (= nQ). The life time of each 

item is assumed to be exponential. The operating policy is (s, S) policy, that is, whenever the inventory level drops to s, 

an order for Q = (S - s > s) item is placed. The ordered items are received after a random time which is distributed as 

exponential. We assume that demands occurring during the stock-out period enter into the orbit. These orbiting demands 
send out signal to complete for their demand which is distributed as exponential. The joint probability distribution of the 
inventory level at retailer, inventory level at DC and the number of demands in the orbit are obtained in the steady state 
case. Various system performance measures are derived and the results are illustrated numerically. 
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1 Introduction 

The analysis of perishable inventory systems has been the theme of many articles due to its potential applications in 
sectors like food, chemicals, pharmaceuticals, photography and blood bank management. The often quoted review articles 
[12,28] and the recent review articles [29,23] provide excellent summaries of many of these modeling efforts.                                                

        Most of these models deal with either the periodic review systems with fixed life times or continuous review systems 
with instantaneous supply of reorders. In the case of continuous review perishable inventory models with random life times 
for the items, most of the models     assume instantaneous supply of order [26,27,24]. The assumption of positive lead 
times further increases the complexity of the analysis of these models and hence there are only a limited number of 
papers dealing with positive lead times. Moreover they are mostly devoted to the systems with base stock policy [25] or 
fixed reorder level [21]. 

In all these models, authors assumed that the demands that occurred during stock-out is either backlogged or 
lost and the number of sources that generate demands are infinite. In this paper we relax these assumptions. We assume 
that the demands that occurred during stock- out enter into the orbit and retry for their demands after a random time. The 
concept of retrial demands in inventory was introduced in [19] and only few papers [31,30] have appeared in this area. 

However, considerable interest is shown in the study of Queuing models with retrial customers [20,17-19,22]. 

In this article, we consider a continuous review perishable inventory system with poisson demands. The 

maximum storage capacity at lower echelon (retailer) is S and the upper  Echelon (Distribution Center) is M(= nQ). The 

life time of each item is assumed to be exponential. The operating policy is (s, S) policy, that is, whenever the inventory 

level drops to s, an order for Q = (S - s> s) item is placed. The ordered items are received after a random time which is 

distributed as exponential. We assume that demands occurring during the stock-out period enter into the orbit. These 
orbiting demands send out signal to complete for their demand which is distributed as exponential. 

The first quantitative analysis in inventory studies started with the work of Harris (1915) [9].Clark and Scarf (1960) 
[4] had put forward the multi-echelon inventory first. They analyzed a N-echelon pipelining system without considering a lot 
size, Recent developments in two-echelon models may be found in Q.M. He and E.M. Jewkes (2000)[13]. Sven Axaster 
(1990)[1] proposed an approximate model of inventory structure in SC. One of the oldest papers in the field of continuous 
review multi-echelon inventory system is a basic and seminal paper written by Sherbrooke [15] in 1968. He assumed (S-1, 
S) polices in the Deport-Base systems for repairable items in the American Air Force and could approximate the average 
inventory and stock out level in bases.  

Continuous review models of multi-echelon inventory system in 1980's concentrated more on repairable items in 
a Depot-Base system than as consumable items (see Graves [6,7], Moinzadeh and Lee [11]). All these papers deal with 
repairable items with batch ordering. Jokar and Seifbarghy [14] analyzed a two echelon inventory system with one 
warehouse and multiple retailers controlled by continuous review (R, Q) policy. A Complete review was provided by Benita 
M. Beamon (1998)[2]. The supply chain concept grow largely out of two-stage multi-echelon inventory models, and it is 
important to note that considerable research in this area is based on the classic work of Clark and Scarf (1960)[4]. A 
continuous review perishable inventory system at Service Facilities was studied by Elango (2001) [5]. A continuous review 
(s, S) policy with positive lead times in two-echelon Supply Chain was considered by Krishnan. K and ElangoC.2005 [10].                                                            

 The rest of the paper is organized as follows. In Section 2, we describe the mathematical model. The steady-
state analysis of the model is presented in Section 3. In Section 4, some key system performance measures are derived. 
In section 5, we calculate the total expected cost rate. In Section 6, the results are illustrated numerically. The last section 
concludes the paper. 

Notation: 

  [𝐴]𝑖,𝑗  : (i, j) th element/ block of the matrix A 

  𝐼𝑛  : Identity matrix of order n 

  e : column vector of ones with appropriate dimension 

  S = The maximum inventory level at retailer nodes 

  s = Reorder level at retailer nodes 

  Q = S − s 

  E = { 𝑖, 𝑗, 𝑘 |𝑖 =  0, 1, … , 𝑁, 𝑗 =  0, 1, … , 𝑆, 𝑘 =  𝑄, 2𝑄, … , 𝑛𝑄}  

 


nQ

Qk

(.)  stands for 
Qk

(.)  + 
 Qk 2

(.)  + 
 Qk 3

(.)  +,…, + 
nQk

(.)  
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2.  Model Description 

          We consider a two level supply chain consisting one product, one manufacturing facility, one warehousing facility 

and one retailer. The demands initiated at retailer node follow Poisson process with parameter λ (> 0) and the lead times 

are exponentially distributed with parameter 𝜇  (> 0). The retailer follows (s, S) policy for maintaining his inventory and 

the distributor follow (0, nQ) policy for maintaining his inventory. The items are perishable in nature. The life time of an 

item is exponentially distributed with parameter 𝛾 (> 0). The unsatisfied customers are treated as retrial customers and 

they are waiting in the orbit with finite capacity N. The repeated customers from the orbit (with capacity i) are entered into 

the system with rate i𝜃(> 0). Even though we have adopted two different policies in the Supply Chain, the distributors 

olicy is depends upon the retailers policy. The model minimizes the total cost incurred at all the locations subject to the 
service level constraints. The system performance measures and the total cost are computed in the steady state. The 
results are illustrated numerically. 

3. Analysis 

Let X(t); Y (t) and Z(t) respectively denote the number of demands in the orbit,  the on hand inventory level in 

the retailer node and the number of items in the Distribution centre at time t. From the assumptions on the input and 

output processes, clearly X
1
(t) = {(X(t), Y (t), Z(t)) : t > 0 } is a Markov process with state space E. The 

infinitesimal generator of this process A = (a(i, k, m : j, l, n)),  (i, j, m), (j, l, n)   E can be obtained from the 

following arguments. 

 The primary arrival of demand to the retailer node makes a transition in the Markov process from (i, j, k) to    

(i −1, j,  k) with intensity of transition  λ. 

 The arrival of a demand at retailer node from orbit transition in the Markov Process from (i, j, k) to                

(i – 1, j 1,k) with intensity of transition i𝜃. 

 The item expires makes a transition from (i, j, k) to (i−1, j, k) with intensity of transition 𝛾. 

 Replenishment of inventory at retailer node makes a transition from (i,  j,  k) to   (i, j + Q, k− Q) with rate of 

transition 𝜇.  

Then, the infinitesimal generator has the following finite QBD structure: 
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       Here the matrices Ai, Bi and C are the square matrices of order (S+1)n and note that the matrix D is the square 

matrix of order n. 

3.1 Steady state analysis 

       Since the state space is finite and P is irreducible, the stationary probability vector П for the generator P always 

exists and satisfies ПP=0  Пe=1 

The vector П can be represented by   

                        П = 
  N,......,,,( 210
 

Where, 0 ≤  i  ≤ 1 

                      П
<i>

 = ),......,,( ,.1,0,  Siii   

                 П
<<i,j>>

 = SjnQjiQjiQji ,.....,2,1,0),,......,,( ,,2,,,,    

        Now the structure of P shows, the model under study is a finite birth death model in the Markovian environment. 

Hence we use the Gaver algorithm for computing the limiting probability vector. For the sake of completeness we provide 
the algorithm here. 

Algorithm: 

1. Determine recursively the matrix Dn,  0 ≤ n ≤ N  by using 

               D0 = 0A
        

(3.1) 

               Dn  = KnCDBA nnn ,....2,1,)( 1

1  

               
(3.2) 

 2. Slove the system 

                0 

N

N D .       (3.3) 

 3. Compute recursively the vector 0,.....,1,   Nnn
 using  

               П
<n>

 = 0,......,1),( 1

1

1  



 nnDB nn

n
.   (3.4) 

 4. Re-normalize the vector П, using  

                 .1e        (3.5) 

4  Performance measures 
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          Consider the event rR of reorders at nodes and D. Observe that rD event occur whenever the inventory level at 

DC node reaches 0 whereas the rR event occurs whenever the inventory level at retailer node reaches reorder level s. 

4.1 Mean reorder rate 

          Let IR denote the expected inventory level in the steady state at retailer node and ID denote the expected inventory 

level at distribution centre. 

                               IR  =   
  


N

i

S

j

nQ

Qk

kjij
0 1

,,
     (4.1) 

 

                      

ID   = 
  


N

i

S

j

nQ

Qk

kjik
0 0

,,      (4.2)          

4.2   Expected number of demands in the orbit  

 Let E(o) denote the expected number of customer in the orbit which is given by  

                          E(o)   =  
  


N

i

S

j

nQ

Qk

kjii
1 0

,,

     (4.3)

 

4.3   Mean reorder rate  

 The mean reorder rate at retailer node is given by  

                            rR   =  
 


N

i

nQ

Qk

ksisi
0

,1,))1(( 

    

(4.4) 

4.4 Shortage rate 

Shortage occurs only at retailer node and the shortage rate for the retailer is denoted by αR and which is given by  

                             R   =  
 


N

i

nQ

Qk

ki

0

,0, + 
 


N

i

nQ

Qk

kii
1

,0,

   

(4.5) 

5    Cost Analysis 

In this section we analyze the cost structure for the proposed models by considering the minimization of the steady state 
total expected cost per time.  

The long run expected cost rate for the model is defined to be 

                         
)0(),,( 0 EcgrkIhIhnsSTC RRRRDDRR    

         hR- denote the inventory holding cost/ unit / unit time at retailer node  

         hD- denote the inventory at distribution centre  

         kR-  denote the setup cost/ order at retailer node  

         gR-  denote the shortage cost/  unit shortage at retailer node 

         co-   denote the back ordering of a demand in the orbit / unit time.    

6   Numerical Illustration 

Example:  We analyzed the following in the numerical section. 

1. Table 1 and Table 2 give the effect of total cost function by varying the  set-up cost,  holding cost,  shortage cost 
and the back ordering cost. 

2. Figure 1 shows that the effect of the demand rate λ and lead time µ on long run expected cost. 
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3.  Figure 2 shows that the effect of the primary demand rate λ and orbiting demand rate θ on long run expected 

cost. 

4.  Figure 3 shows that the effect of the lead time µ and orbiting demand rate θ on long run expected cost 

5.  Figure 4 shows that the effect of the demand rate λ and perishable demand γ rate on long run expected cost. 

6.  Figure 5 shows that the effect of the orbiting demand rate θ and perishable demand rate γ on long run expected 

cost. 

7.  Figure 6 shows that the effect of the lead time µ and perishable demand rate γ on long run expected cost. 

8.  Finally Figure 7 shows that the effect of maximum number in the orbit on the total cost rate. 

 

 hD =  0.04 hD  =  0.08 hD = 0.12 hD = 0.16 hD = 0.20 

hR = 0.002000 220.112907 220.395536 220.678164 220.960793 221.243421 

hR = 0.004000 220.117181 220.399809 220.682438 220.965066 221.247694 

hR = 0.006000 220.121454 220.404082 220.686711 220.969339 221.251968 

hR = 0.008000 220.125727 220.408356 220.690984 220.973613 221.256241 

hR = 0.010000 220.130001 220.412629 220.695258 220.977886 221.260514 

 

Table 1 :  hR vs hD on TC (18, 4, 6) 

 gR = 0.2 gR =  0.4 gR =  0.6 gR = 0.8 gR = 0.10 

kD = 10 193.290714 199.355262 205.419811 211.484359 217.548907 

kD = 15 204.361368 210.425917 216.490465 222.555013 228.619561 

kD = 20 215.432023 221.496571 227.561119 233.625667 239.690215 

kD = 25 226.502677 232.567225 238.631773 244..696321 250.760869 

kD = 30 237.573331 243.637879 249.702427 255.766975 261.831523 

 

Table 2 :  kR vs gR on TC (18, 4, 6) 
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Figure 1: λ vs µ on TC (18, 4, 6) 

 

Figure 2 :  λ vs θ on TC (18,4,6) 
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Figure 3 :  µ vs θ on TC (18, 4, 6) 

 

Figure 4 :  λ vs γ on TC (18,4,6) 
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Figure 5 :  θ vs γ on TC (18, 4, 6) 

 

Figure 6 :  µ vs γ on TC (18, 4, 6) 
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Figure 7 :  N vs  TC (18, 4, 6) 

From the numerical work, we conclude the following: 

                    1.  As is to be expected λ increases total cost increases, µ and θ increases total cost decreases. 

2. Total cost increases when the costs hD,  hR, gR and kR  increases. 

6  Conclusion 

   In this article, we analyzed a continuous review stochastic perishable inventory system with retrial demands. The arrival 
of demands form a Poisson distribution. The life time of each items, lead times of reorder and the retrial demand time 
points forms independent exponential distributions. The model is analyzed within the framework of Markov processes. 
Joint   probability distribution of inventory level at retailer, distribution and the number of customers in the orbit is obtained 
in the steady state. Various system performance measures are derived and the long-run expected cost rate is calculated. 
By assuming a suitable cost structure on the inventory system, we have presented extensive numerical illustrations to 
show the effect of change of values for constants on the total expected cost rate. It would be interesting to analyze the 
problem discussed in this article where the life time of items are constant. Naturally, with the inclusion of constant life time 
of each items, the problem will be more challenging. Another important extension could be made by relaxing the 
assumption of exponentially distributed lead times to a class of arbitrarily distributed lead times using techniques from 
renewal theory and semi-regenerative processes. Once this is done, the general model can be used to generate various 
special cases. For example, three different lead time distributions one with  coefficient of variation greater than one, one 
with coefficient of variation less than one and another with coefficient of variation equal to one (this model) can be 

compared. Cost analysis can then be carried out for (s, Q), (s, S) and lot-for-lot models using each of the three different 

lead time distributions to determine which policy is optimal for any given lead time distribution. The author is currently 
working on the above extensions, and these will be reported in future publications. 
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