

Matrices of inversions for permutations: Recognition and Applications

E. A. Elrifai and Redha. A. Alghamdi* Department of Mathematical Sciences, Faculty of science, Princess Norah Bint Abdulrahman University, Kingdom of Saudi Arabia. eaelrifai@pnu.edu.sa, *rdh.ashour24@hotmail.com

Abstract

This work provides a criterion for a binary strictly upper triangle matrices to be a matrix of inversions for a permutation. It admits an invariant matrices for permutations to being well recognizable. Then it provides a complete algorithmic classification of elements in the symmetric group S_n . Also it gives an algorithm for generating and writing a permutation in a unique canonical form, as a word of transpositions.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 9, No 1 editor@cirjam.org www.cirjam.com, www.cirworld.com brought to you by \fbox CORE

155N 2347-1921

1 Introduction:

Symmetric groups are important to many studies in mathematics such as group theory, representation theory, combinatorics and invariant theory [1]. Also they are powerful in classifying chemicals and spectral properties of molecules [2], [3], as well as quantum mechanics [4].

For a permutation $\pi : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$, let us denote by π_i for $\pi(i)$ and $\pi = (\pi_1 \pi_2 ... \pi_n)$ in S_n . An inversion of a permutation π is a pair (i, j) with i < j and $\pi_i > \pi_j$, the inversion number of π is the total number of its inversions, i.e. $Inv(\pi) = |\{(i, j) : i < j, \pi_i > \pi_j, \}|$ [5]. The notion called matrix of inversions for a permutation $\pi = (\pi_1 \pi_2 ... \pi_n)$ in S_n is introduced in [6]. That any permutation π in S_n has a unique matrix $M_{\pi} = (m_{ij})_{n \times n}$ of its inversions, where $m_{ij} = 1$ if i < j and $\pi_i > \pi_j$, otherwise $m_{ij} = 0$. Then any matrix of inversions is a binary strictly upper triangular matrix. As an example, consider the permutation $\pi = (6713254)$ in S_7 which has inversions $\{(1,3), (1,4), (1,5), (1,6), (1,7), (2,3), (2,4), (2,5), (2,6), (2,7), (4,5), (6,7)\}$, then

	0	0	1	1	1	1	1]
	0	0	1	1	1	1	1
	0	0	0	0	0	0	0
$M_{\pi} =$	0	0	0	0	1	0	0
	0	0	0	0	0	0	0
	0	0	0	0	0	0	1
	0	0	0	0	0	0	1 1 0 0 0 1 0

We can, directly, extract the matrix M_{π} of π by considering the permutation as π a function $\begin{pmatrix} 1 & 2 & . & . & n \\ \pi_1 & \pi_2 & . & . & \pi_n \end{pmatrix}$, then look to each restriction $\begin{pmatrix} i & j \\ \pi_i & \pi_j \end{pmatrix}$ of π to $\{i, j\}$ for all i < j, and find m_{ij} . For the permutation $\pi = (6713254)$, the restrictions $\begin{pmatrix} 3 & 6 \\ 1 & 5 \end{pmatrix}, \begin{pmatrix} 4 & 5 \\ 3 & 2 \end{pmatrix}$ give $m_{36} = 0, m_{45} = 1$, respectively.

A binary operation on $M_n(F) = \{M_\pi : \pi \in S_n, m_{ij} \in F = \{0,1\}\}$ is defined in [6], as $M_\alpha + M_\beta = M_\alpha + \max_{mod2} \alpha^{-1}(M_\beta)$ for each α, β in S_n , and if $M_\alpha = (m_{ij})$, then,

$$\beta(M_{\alpha}) = \beta(m_{ij}) = \left\{ \begin{array}{ll} 0 & , \quad i \ge j \\ m_{\beta(i)\beta(j)} & , \quad i < j, \ \beta(i) < \beta(j) \\ m_{\beta(j)\beta(i)} & , \quad i < j, \beta(i) > \beta(j) \end{array} \right\}$$

The set $M_n(F)$ with the above operation is a group which is isomorphic to S_n . Where $F = \{0,1\}$ is the field with the addition $+_{mod2}$, while the associative operations +, on $F = \{0,1\}$ are defined as: 0+0=1+1=0, 1+0=0+1=1, 0. 0=1. 0=0. 1=0, 1. 1=1.

In section two we provide a criterion for a binary strictly upper triangle matrices to be a matrix of inversions for a permutation. It admits an invariant matrix for permutations to being well recognizable. Then it provides a complete algorithmic classification of elements in the symmetric group S_n . In section three we give an algorithm for generating and writing a unique canonical word for a permutation as a word of transpositions. We hope that this work will be useful for the representation of braid groups of Hecke algebra.

2 Recognition of matrices of inversions for permutations

Binary matrices are of interest in combinatorics, information theory, cryptology, and graph theory [7], [8]. For each natural number n, there are 2^{n^2} binary $n \times n$ matrices. But not every such matrix is a matrix of inversions for a permutation in

 S_n for some natural number n . e.g. for n = 2 we have sixteen binary matrices, where there are only two matrices of inversions , and for n = 3 we have $2^{3^2} = 512$ binary matrices, where there are only six matrices of inversions.

As above, every permutation $\pi \in S_n$ has a unique matrix of inversions $M_{\pi} = (m_{ij})$ which is $n \times n$ binary strictly upper triangular matrix. In fact, each binary strictly upper triangular $n \times n$ matrix has n(n-1)/2 entries in the upper triangle, then there are $2^{n(n-1)/2}$ of such these matrices, but not every such matrix is a matrix of inversions of a permutation. For n = 3 there are eight binary strictly upper triangular matrices, but we have only 6 matrices of inversions of any permutation.

Example 1 Consider the binary strictly upper triangular 4×4 matrix

<i>A</i> =	0	0	1	1]
	0	0 0 0	0	1
	0	0	0	1
	0	0	0	0

it can not be a matrix of inversions of any permutation in S_4 . To see that take $\pi = (\pi_1 \pi_2 \pi_3 \pi_4)$ in S_4 , the first row in A implies that $\pi_1 < \pi_2, \pi_1 > \pi_3, \pi_1 > \pi_4$, while the second row gives $\pi_2 < \pi_3, \pi_2 > \pi_4$, then $\pi_1 < \pi_2 < \pi_3$ which contradicts $\pi_1 > \pi_3$, hence A does not a matrix of inversions.

Now we are going to give a necessary and sufficient condition for a binary strictly upper triangle matrix to be a matrix of inversions of a permutation, then we can recognize matrix of inversions. We are going to establish the $(n+1)\times(n+1)$ matrices of inversions from $n\times n$ matrices of inversions. Given an $n\times n$ matrix of inversions A_{π} , we can enlarge it by $(n+1)\times 1$ column and $1\times (n+1)$ row vectors.

Definition 2 For each n in \mathbb{N} and for a permutation $\pi = (\pi_1 \pi_2 \dots \pi_n)$ in S_n , define the lifting operator $T: S_n \to S_{n+1}$, $T(\pi) = (1 \pi_1 + 1 \pi_2 + 1 \dots \pi_n + 1)$. Also for $r = 1, 2, \dots, n+1$, define the (r, n) inserting permutation $I_n^r(\pi)$ of π in S_{n+1} , by $I_n^r: S_n \to S_{n+1}$, $I_n^r(\pi) = T(\pi) \circ C_r$, where

$$C_r = \left\{ \begin{array}{ll} id. & , \quad r = 1 \\ (r \ 1 \ 2 \ 3...r - 1 \ r + 1...n \ n + 1) & , \quad 2 \le r \ \le n \\ (n + 1 \ 1 \ 2 \ 3...n \) & , \quad r \ = n + 1 \end{array} \right\}$$

In fact the lifting operator T is the inserting (1,n), i.e. $T = I_n^1$. A geometric representation of the permutations $\pi, T(\pi), C_r$, and $I_n^r(\pi)$ is illustrated in Figure 1.

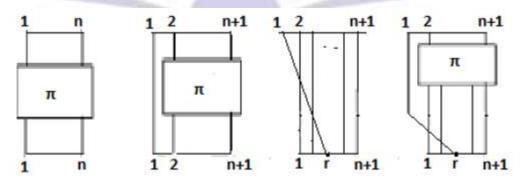


Figure 1: From left to right, a geometric representation of the permutations π in S_n and $T(\pi)$, C_r and $I_n^r(\pi)$ in S_{n+1}

Lemma 3 For a permutation π in S_n , the (r,n) inserting permutation $\theta = I_n^r(\pi)$ of π in S_{n+1} is

$$\theta_i = \left\{ \begin{array}{ll} r & , \quad i = 1 \\ \pi_{i-1} & , \quad \pi_i < r, 1 < r \le n+1 \\ \pi_{i-1} + 1 & , \quad \pi_i \ge r, 1 < r \le n+1 \end{array} \right\}$$

Proof. From the definition above $\theta = I_n^r(\pi) = T(\pi) \circ C_r$, then $\theta_1 = (T(\pi) \circ C_r)_1 = C_r(T(\pi)_1) = C_r(1) = r$. Now for $i \in \{2,3,...,n\}$ and for π_i with $\pi_i < r$, then $\theta_i = \pi_{i-1}$, but for $\pi_i > r$, we have $\theta_i = \pi_{i-1} + 1$. So that,

$$I_n^r(\pi) = T(\pi) \circ C_r = \theta = \left\{ \begin{array}{ll} \theta_i = r & , \quad i = 1\\ \theta_i = \pi_{i-1} & , \quad \pi_i < r, i \in \{2, 3, ..., n+1\}\\ \theta_i = \pi_{i-1} + 1 & , \quad \pi_i \ge r, i \in \{2, 3, ..., n+1\} \end{array} \right\}$$

Proposition 4 For a permutation π in S_n with matrix permutation inversion $M_{\pi} = (m_{ij})$, the r-th embedding $I_n^r(\pi) = T(\pi) \circ C_r$ of π in S_{n+1} has matrix of inversions

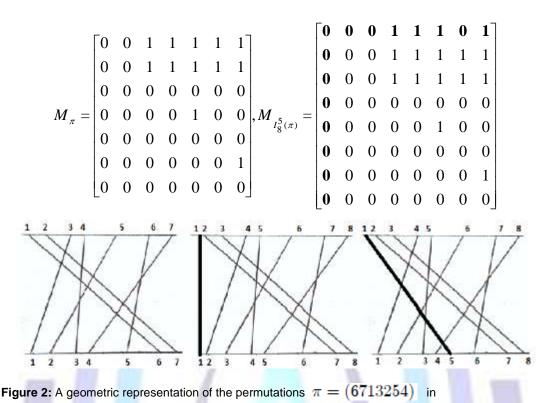
$$M_{I_n^r(\pi)} = M_{T(\pi) \circ C_r} = (n_{ij}) = \left\{ \begin{array}{cccc} m_{i-1j-1} & , & 2 \le i, j \le n+1 \\ n_{j1} = 0 & , & 1 \le j \le n+1 \\ n_{1j} = 0 & , & \pi_j \ge r \\ n_{1j} = 1 & , & \pi_j < r \end{array} \right\}$$

Proof. Let π be a permutation in S_n with matrix of inversions $M_{\pi} = (m_{ij})$, then the (1, n) inserting permutation $I_n^1(\pi)$ of π in S_{n+1} is $I_n^1(\pi) = (1 \pi_1 + 1 \pi_2 + 1 \dots \pi_n + 1)$, see second graph in Figure 1. Then $(I_n^1(\pi))_1 = 1 < (I_n^1(\pi))_i$ for all i > 1, so that the entries in the first row of its matrix of inversions $M_{I_n^1(\pi)}$ will be zeros. Then

$$M_{I_n^1(\pi)} = \begin{bmatrix} 0 & 0 & . & 0 \\ 0 & & \\ . & M_{\pi} & \\ 0 & & \end{bmatrix}$$

Now, for $\pi_{i-1} < r$, then $\theta_j = \pi_{i-1}, i \in \{2,3,...,n+1\}$ and for the pair (1,i) where 1 < i, we have $\theta_1 = r > \theta_i$, so we have inversion, hence $n_{1i} = 1$. Also, for $\pi_{i-1} \ge r$, then $\theta_i = \pi_{i-1} + 1, i \in \{2,3,...,n+1\}$ and for the pair (1,i) where 1 < j, we have $\theta_1 = r < r+1 \le \pi_{i-1} + 1 = \theta_i$, so we have no inversion, hence $n_{1i} = 0$. Therefore the first row of $M_{I_n^1(\pi)}$ has r ones, where $\pi_{i-1} < r$, otherwise zeros

Example 5 Consider the permutation $\pi = (6713254)$ in S_7 , then for r = 5, we have $\pi_i < 5, i = 3, 4, 5, 7$ and $\pi_i \ge 5, i = 1, 2, 6$. Let $I_8^5(\pi) = \theta = (\theta_1 \theta_2 \dots \theta_8)$, then $\theta_1 = r = 5$, $\theta_i = \pi_{i-1}$ for i = 4, 5, 6, 8 and $\theta_i = \pi_{i-1} + 1$ for i = 2, 3, 7. Then the first row in the matrix $M_{I_8^5(\pi)}$ has exactly r - 1 = 4 ones, and $\theta = (57813264)$ in S_8 . Figure 2 illustrates a geometric representation of permutations $\pi = (6713254)$ and $I_8^5(\pi) = \theta = (57813264)$. The associated matrices of inversions M_π and $M_{I_8^5(\pi)}$ are,



 $S_7, T(\pi) = I_8^1(\pi) = (17824365)$ and $I_8^5(\pi) = (57813264)$ in S_8

Definition 6 A submatrix of a matrix M is the matrix obtained from $M = (m_{ij})$ by deleting rows and columns but without permuting the remaining rows and columns. The submatrix obtained from a $n \times n$ matrix M by deleting the first n-k rows and columns, k = 1, 2, ..., n-1 is called the k-th lower right submatrix, $LR(M)_k$, of the matrix M.

Theorem 7 A binary strictly upper triangle $n \times n$ matrix M is a matrix of inversions of a permutation π in S_n for some positive integer n if and only if for every $1 \le k \le n-1$ there exists $1 \le r \le k$ such that $LR(M)_k = M_{I_{k}^{r}(\theta)}$ for some θ in S_{k-1} .

Proof. For the necessity, let π be a permutation in S_n and $M_{\pi} = (m_{ij})$ be its matrix of inversions. Then take k such that $1 \le k \le n-1$, so by deleting the strands $(i \pi_i)$, from i = 1, then i = 2, up to i = k from the permutation π , then we have a new permutation $\theta = (\theta_1 \theta_2 \dots \theta_{n-k})$ in S_{n-k} , where its matrix of inversions will be $LR(M_{\pi})_k$, as in proposition above. For the converse, let M be a binary strictly upper triangle $n \times n$ matrix such that $LR(M)_k = M_{I_n^r(\theta)}$ for some θ in S_{k-1} for every $1 \le k \le n-1$ and for some r with $1 \le r \le k$. If so we apply the process lemma above and use induction, which ends the proof.

Example 8 For $\pi = (68237541) \in S_8$, starting from $m_{11} = 0$ where M_{π} is a strictly upper triangle matrix, then compare the value $\pi_1 = 6$ with the next values of π_i , i = 2, 3, ..., 8, then $m_{1i} = 0$ for $\pi_1 < \pi_i$ and $m_{1i} = 1$ for $\pi_1 > \pi_i$. The first row of the matrix M_{π} will be (0, 0, 1, 1, 0, 1, 1, 1). For the second row $m_{21} = m_{22} = 0$, then compare the value $\pi_2 = 8$ with the next values of π_i , i = 3, 4, ..., 8, then $m_{2i} = 1$ for all $i \ge 3$. Then the second row of the matrix M_{π} will be (0, 0, 1, 1, 1, 1, 1). Following this process, we have M_{π} as,

$$M_{\pi} = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Then

$$LR(M_{\pi})_{4} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

with associated permutations $\theta = (4321)$ and $I_5^1(\theta) = (25431)$, and with matrix of inversions

$$M_{I_5^1(\theta)} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

3 Generating and writing a unique canonical word for a permutation

The most common way for writing a permutation in a unique form is by decomposing it into combinations of cycles [1]. Here we give an algorithm for generating and writing a permutation in a standard canonical form as a composition of transpositions.

Algorithm 9 Generating and writing down a permutation from its matrix of inversions in a unique canonical form:

- 1. For a permutation π in S_n , find its matrix of inversions M_{π} .
- 2. Each row will be producing a word as a product of transpositions.
- 3. The row that all its entries are zeros will contribute by the identity word, id..
- 4. If the number of ones in the entries of the i^{th} row is k, then the corresponding word will be $w_i = \tau_i \tau_{i+1} \dots \tau_{i+k-1}$.
- 5. Then writes $\pi = w_n w_{n-1} \dots w_1$.

Consider the permutation $\pi = (531642)$, then its matrix of inversions is

Then $w_1 = \tau_1 \tau_2 \tau_3 \tau_4$, $w_2 = \tau_2 \tau_3$, $w_3 = id$., $w_4 = \tau_4 \tau_5$, $w_5 = \tau_5$, $w_6 = id$., and the associated canonical word is

 $\pi = w_6 w_5 \dots w_1 = id \dots \tau_5 \dots \tau_4 \tau_5 \dots id \dots \tau_2 \tau_3 \dots \tau_1 \tau_2 \tau_3 \tau_4 = \tau_5 \dots \tau_4 \tau_5 \dots \tau_2 \tau_3 \dots \tau_1 \tau_2 \tau_3 \tau_4.$ Notice that the arrangement of the words w_i is according to the tower of the associated lower right corner submatrices of the matrix M_{π} , where the associated k-th lower right submatrices, $LR(M)_k$, k=0,1,...,5, are

$LR(M_{\pi})_{5}$	$LR(M_{\pi})_4$	$LR(M_{\pi})_3$	$LR(M_{\pi})_2$	$LR(M_{\pi})_1$	$LR(M_{\pi})_{0}$
[0]	$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

References

- [1] 1R. McWeeny, "An introduction to group theory and its applications" Dover Publications, USA, 2002.
- [2] IW. Ludwig and C. Falter, "Symmetries in Physics" Springer, Berlin, 1988.
- [3] Alan Vincent, "Molecular Symmetry and Group Theory" Wiley, 1988.
 [4] Weyl and Von Neumann: Symmetry, "Group Theory and Quantum Mechanics" Symmetries in Physics, New Reflections: Oxford Workshop, Oxford, 2001.
- [5] B. H. Margolius, Permutations with inversions, J. Integer Seq., Article 01.2.4, 4 (2001).
- [6] E. A. Elrifai, M. Anis, "Positive permutation braids and permutation inversions with some applications" Journal of knot theory and its ramifications, Vol. 21, No. 10, 2012.
- R. Baeza-Yates and B. Ribeiro-Neto "Modern Information Retrieval". Addison Wesley, 1999. [7]
- [8] Arjen Stolk Discrete tomography for integer-valued functions". Ph.D. thesis, Leiden University, Holand, Printed by Ridderprint, Ridderkerkat, 2011.

