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ABSTRACT 

The paper presents geometric derivations of Jensen's and Hermite-Hadamard's inequality. Jensen's inequality is further 

involved to a concept of quasi-arithmetic means. Hermite-Hadamard's inequality is applied to compare the basic quasi-

arithmetic means, power and logarithmic means. 
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1. INTRODUCTION 

Some research fields close to mathematics in the basis of their work use estimations between the two superior states 

expressed by the numerical values a  and b . So we are talking about the means ranging between a  and b , concerning 

inequalities in mathematics and entropies in applied sciences. 

The branch of mathematical inequalities is focused to convex sets and convex functions of a real linear space  . A set 

   is convex if it contains the line segments connecting all pairs of its points (all binomial convex combinations 

1 1 2 2A A   of points 
1 2,A A   and non-negative coefficients 1 2,    satisfying 1 2 =1  ). A function 

:f    is convex if the inequality  

 1 1 2 2 1 1 2 2( ) ( ) ( )f A A f A f A       (1) 

holds for all binomial convex combinations in  . 

Within the concept of convexity, we also use an affinity. A set    is affine if it contains the lines passing through all 

pairs of its points (all binomial affine combinations 1 1 2 2A A   of points 1 2,A A   and coefficients 1 2,    

satisfying 1 2 =1  ). A function :f    is affine if the equality holds in equation (1) for all binomial affine 

combinations in  . 

Using the mathematical induction, it can be proved that a convex set contains all finite convex combinations of its points, 

and that every convex function satisfies the inequality in (1) for all finite convex combinations in  . Similar is true for 

affine sets and functions. 

2. JENSEN’S INEQUALITY 

We want to present the famous Jensen's inequality (see[9]) by using the convex polygon. 

Let numbers 1, , na a  belong to the domain of a real convex function f . Take the corresponding graph points 

= ( , ( ))i i iA a f a . Their convex hull  

 1= conv{ , , }nA A  (2) 

is convex polygon inscribed in the function epigraph  

 epi ={( , ) : ( )}.f x y y f x  (3) 

If 1, , n   are non-negative coefficients satisfying 
=1

=1
n

ii
 , then the planar convex combination 

=1

n

i ii
A , that 

is, its center   

 
=1 =1 =1

= = ( , ( ))
n n n

i i i i i ii i i
A A a f a       

belongs to the polygon  . Therefore, it must be that  

 

=1 =1

( ),
n n

i i i i

i i

f a f a 
 

 
 
   (4) 

as can be seen in Figure 1. The inequality in equation (4) represents the discrete form of Jensen's inequality. 

Remark 2.1. 1  If the function f  is strictly convex, then all the points iA  are vertices of the convex polygon  .   

Example 2.2.2  The application of Jensen' inequality to the function ( ) = lnf x x  and the arithmetic mean 

1 1(1/ 2) (1/ 2)a b   where a  and b  are positive numbers, yields the harmonic-geometric mean inequality  
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2ab

ab
a b




 (5) 

because  

 
1 1 1 11 1 2 1 1

= ln , ( ) ( ) = ln .
2 2 2 2

ab
f a b f a f b ab

a b

    
  

 
  

   

              

                                                      Figure 1. The geometric presentation of equation (4) 

To get the integral form of Jensen's inequality inequality, we take an interval [ , ]a b  where <a b , and include an 

integrable function :[ , ]g a b  . We assume that the image of g  is contained in the domain of f , and ( )f g  is 

integrable. Given the integer n , we take the points = ( )ni nia g x  where = ( ) /nix a b a i n   assuming that 

0 =nx a , and the coefficients 1=1/ = [ ] / ( )ni ni nin x x b a   . Substituting nia  and ni  in the inequality in 

equation (4), we get  

     1 1

=1 =1

1 1
,

n n

ni ni ni ni ni ni

i i

f x x g x x x f g x
b a b a

 

 
           

   (6) 

and letting n  to infinity, we obtain the integral inequality  

  
1 1

( ) ( ) .
b b

a a
f g x dx f g x dx

b a b a

 
 

  
   (7) 

The importance and applicability of convex combinations dealing with inequalities can be seen in [13]. 

3. HERMITE-HADAMARD’S INEQUALITY 

First we would like to derive the well-known Hermite-Hadamard's inequality (see [8] and [7]) in a simple way. For this 

purpose, two lines will be used. 

Let a  and b  be real numbers such that <a b , and let :[ , ]f a b   be a convex function. Let 
cho

{ , }a bf  be the function 

of the chord line passing through the points ( , ( ))A a f a  and ( , ( ))B b f b . Let ( , )c a b  be an interior point, and let 

sup

{ }cf  be the function of some support line passing through the point ( , ( ))C c f c . Then the inequality  

 
sup cho

{ } { , }( ) ( ) ( )c a bf x f x f x   (8) 

holds for every [ , ]x a b . Integrating the above inequality on the interval [ , ]a b , we obtain  
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sup cho

{ } { , }( ) ( ) ( ) ,
2 2

b

c a b
a

a b a b
b a f f x dx b a f

    
      

   
  (9) 

as evidenced by Figure 2 (it is obvious that the area of the curvilinear trapezoid is between the areas of the support and 

chord trapeze). Applying the midpoint = ( ) / 2c a b  to the support line, and using the affinity of the chord line, we have  

 
sup

{ }
2

= ,
2 2

a b

a b a b
f f

    
   
   

  

and  

 
cho cho cho

{ , } { , } { , }

1 1 ( ) ( )
= ( ) ( ) = .

2 2 2 2
a b a b a b

a b f a f b
f f a f b

  
 

 
  

Involving the above equalities to equation (9), and dividing with b a , we achieve the Hermite-Hadamard inequality  

 
1 ( ) ( )

( ) .
2 2

b

a

a b f a f b
f f x dx

b a

  
  

 
  (10) 

The discrete form  

 

=1

( ) ( )
( ) .

2 2

n

i i

i

a b f a f b
f f a

  
  

 
  (11) 

holds for every convex combination 
=1

=
n

i ii
c a  of points [ , ]ia a b  with the center = ( ) / 2c a b . 

                      

                                         Figure 2. The geometric presentation of equation (9) 

 

 

Remark 3.1. 3  The support trapeze area on the left side of equation (9) attains the maximal value at the midpoint 

= ( ) / 2c a b .   

Example 3.2. 4  The application of Hermite-Hadamard's inequality to the exponential function ( ) = xf x e  on the interval 

[ln , ln ]a b  where 0 < <a b , yields the geometric-logarithmic-arithmetic mean inequality  

 
ln ln 2

b a a b
ab

b a

 
 


 (12) 

because  
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ln

ln

ln ln (ln ) (ln )
= , = , = .

2 2 2

b
x

a

a b f a f b a b
f ab e dx b a

   
 

 
   

4. QUASI-ARITHMETIC MEANS 

Every convex combination 
=1

=
n

i ii
c a  of numbers ia  such that min max= < =a a a b  can be reduced to the 

binomial form =c a b  , where = ( ) / ( )b c b a    and = ( ) / ( )c a b a   . So, the means between the 

two given numbers are preferred. To generalize a notion of the arithmetic mean of numbers a  and b , we use a strictly 

monotone continuous function :[ , ]a b   assuming that <a b . Theorem 4.2 indicates the way in which two 

specific means can be compared, and it is the main section result. 

The discrete quasi-arithmetic mean of the numbers a  and b  respecting the function   is defined by the number  

 
dis 1 ( ) ( )

( , ) = .
2

a b
M a b

 
  

 
 

 (13) 

The integral quasi-arithmetic mean of the numbers a  and b  respecting   is the number  

 
int 1 1

( , ) = ( ) .
b

a
M a b x dx

b a
    

 
 
  (14) 

The discrete or integral quasi-arithmetic mean ( , )M a b  is in [ , ]a b  because the numbers in parentheses are in 

([ , ])a b . These means satisfy the affinity property, that is, the equality  

 ( , ) = ( , )M a b M a b    (15) 

holds for every pair of real numbers 0   and  . 

According to the right inequality of the Hermite-Hadamard formula in equation (10), we have the inequality  

 
int dis( , ) ( , )M a b M a b   (16) 

if   is either convex and increasing or concave and decreasing, and the reverse inequality if   is either convex and 

decreasing or concave and increasing. 

Lemma 4.1. 5  Let :[ , ]f a b   be a convex function. Let [ , ] [ , ]c d a b  be a subinterval such that <c d  and  

 = .
2 2

c d a b 
 (17) 

Then  

 
( ) ( ) ( ) ( )

2 2

f c f d f a f b 
  (18) 

and  

 
1 1

( ) ( ) .
d b

c a
f x dx f x dx

d c b a


    (19) 

Proof. Let us prove the integral inequality in equation (19). Put = [ , ]c d , | |= d c , = [ , ]a b  and 

| |= b a . Assuming equation (17), and applying the affinity of the function 
cho

{ , }c df , we obtain the equalities  

 
cho cho cho

{ , } { , } { , }
\

1 1 1
( ) = ( ) = ( ) .

| | | | | \ |
c d c d c df x dx f x dx f x dx        

 (20) 
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Using equation (20), and the fact that 
cho

{ , }( ) ( )c df x f x  for all x  as well as 
cho

{ , }( ) ( )c df x f x  for all \x  , 

we get  

 

cho cho

{ , } { , }
\

\

1 1 1
( ) ( ) = ( )

| | | | | \ |

1
( ) .

| \ |

c d c df x dx f x dx f x dx

f x dx





  



   

 

   

 

 (21) 

Now the binomial convex combination  

 
\

1 | | 1 | \ | 1
( ) = ( ) ( )

| | | | | | | | | \ |
f x dx f x dx f x dx

   
   

   
     

  

     
 (22) 

provides the inequality in equation (19).                                                                                                                            

Relying on the above lemma, we can prove the next rule for comparison of discrete or integral quasi-arithmetic means 

( , )M c d  and ( , )M a b . 

Theorem 4.2. 6  Let :[ , ]a b   be a strictly monotone continuous function. Let [ , ] [ , ]c d a b  be a subinterval 

such that <c d  and  

 = .
2 2

c d a b 
 (23) 

If   is either convex and increasing or concave and decreasing, then  

 ( , ) ( , ).M c d M a b   (24) 

If   is either convex and decreasing or concave and increasing, then the reverse inequality is valid in equation (24).             

 

                                        Figure 3. The graphic presentation of equation (25) 

Having two strictly monotone continuous functions , :[ , ]a b   , we say that the function   is  -convex if the 

composition function 
1( ) 

 is convex. In order to compare quasi-arithmetic means M  and M , we rely on the 

details presented in the following theorem. 

 Theorem A. 7  Let , :[ , ]a b    be strictly monotone continuous functions. 

If   is either  -convex and increasing or  -concave and decreasing, then  

 ( , ) ( , ).M a b M a b   (25) 
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If   is either  -convex and decreasing or  -concave and increasing, then the reverse inequality is valid in equation 

(25).   

The inequality in equation (25) is strict if   is either strictly  -convex or strictly  -concave. To prove Theorem A we 

apply Jensen's inequality to the convex or concave function 
1= ( )f  

. Different forms of quasi-arithmetic means 

have been considered in [12]. 

The quasi-arithmetic mean inequality in equation (25) is graphically presented in Figure 3. The point 

( ( ( , )), ( ( , )))M M a b M a b    is located at the chord line in the discrete case, and M  is located between the 

curve graph and chord line in the integral case. 

5. POWER AND LOGARITHMIC MEANS 

Power means are investigated and used as a special case of quasi-arithmetic means. These means apply the power 

function ( ) = rx x . Logarithmic means arise by continuous extending of power means. The main result of the section is 

the presentation of Theorem 5.2 determining the order of power and logarithmic means. 

Take positive numbers a  and b , and consider the discrete mean  

 

1

( )=

dis ( , ) =
2

r r r

rx x

a b
M a b



 
 
 

 (26) 

with the exponent 0r  . Calculating the limit as r  approaches 0 , we get the power means of order r  in the form  

 

1

   ,    0
( , )  .2

             ,    = 0

r r r

r

a b
r

M a b

ab r


     



 (27) 

The known members of the mean collection rM  are harmonic mean 1=H M , geometric mean 0=G M , and 

arithmetic mean 1=A M . 

Now take different positive numbers a  and b , and consider the integral mean  

 

11

11
1

1( )=

1int ( , ) = =
( )

r r rrb
r

rx x a

a b
M a b x dx

b a r a b






  
   

    
  (28) 

 with the exponent 0,1r  . Calculating the limits as r  approaches 0  and 1 , and the limit as b  approaches a , we get 

the generalized logarithmic means (see [17]) of order r  as  

 

1

1

1

, 0,1 ,
( )

, = 0 ,
( , ) = .ln ln

1
, = 1 ,

, =

r r r

r

a a b

b

a b
r a b

r a b

a b
r a b

L a b a b

a
r a b

e b

a a b






      








 
 

 


 (29) 
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The important means of the collection 
rL  are geometric mean 

1=G L
, logarithmic mean 

0=L L , identric mean 

1=I L , and arithmetic mean 2=A L . 

Remark 5.1. 8  The logarithmic and identric mean for different positive numbers a  and b  can be obtained by using 

integrals,  

 

1
1 1

( , ) = =
ln ln

b

a

a b
L a b dx

b a x a b


 

 
  
  (30) 

and  

 

1

1 1
( , ) = exp ln = .

a a bb

ba

a
I a b xdx

b a e b

  
   

   
  (31) 

Assume that 0 < <a b . Relying on Theorem A, we can prove that the mean functions ( , )rr M a b  and 

( , )rr L a b  are strictly increasing on the whole domain  , having the limit value a  at negative infinity, and b  at 

positive infinity. So, these two mean functions are continuous bijections of   to ( , )a b . 

Applying the convexity and concavity of the power function 
1( ) = rf x x 

 to the Hermite-Hadamard inequality, we can 

determine the mutual order of power and logarithmic means. 

Theorem 5.2. 9  If 0 < <a b  and < 2 <r s , then we have the series of inequalities  

 1 1< ( , ) < ( , ) < ( , ) < ( , ) < ( , ) < .r r s sa M a b L a b A a b L a b M a b b   (32) 

Proof. Taking into account what has been said above, we need to prove the inequalities 

1( , ) < ( , ) < ( , )r rM a b L a b A a b  and 1( , ) < ( , ) < ( , )s sA a b L a b M a b . Prove the inequality referring to r  by 

using the power function 
1( ) = rf x x 

 in the cases <1r  and 1< < 2r . If =1r , the accompanying inequality 

0 1( , ) < ( , ) < ( , )M a b L a b A a b  holds. 

If <1r , then applying the Hermite-Hadamard's inequality to the strictly convex function f  on the interval [ , ]a b , we get  

 

1 1 1

< < ,
2 ( ) 2

r r r r ra b a b a b

r a b

     
   

 (33) 

and raising to the negative power 1/ ( 1)r   yields 1( , ) > ( , ) > ( , )r rA a b L a b M a b . 

If 1< < 2r , then applying the Hermite-Hadamard's inequality to the strictly concave function f  on [ , ]a b , we get the 

reverse inequality in equation (33), and raising to the positive power 1/ ( 1)r   yields the required inequality.  

Power and logarithmic means play an important role in representing and solving the problems of thermodynamics, 

quantum mechanics and information theory. In these direct applications, the aforementioned means are usually called 

entropies. For more details, see [6]. 

6. A SHORT LIST OF MEAN INEQUALITIES 

In addition to the previously mentioned means, we also use the centroidal mean of two positive numbers a  and b , 

defined by  

 

2 22( )
( , ) = .

3( )

a ab b
C a b

a b

 


 (34) 

Let a  and b  be different positive numbers. With the well-known inequality  
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 ( , ) < ( , ) < ( , ) < ( , ) < ( , ) < ( , ),H a b G a b L a b I a b A a b C a b  (35) 

we point out the following inequalities: 

                                                          0 1/3( , ) < ( , ) < ( , )M a b L a b M a b  (36) 

                                                          2/3 ln2( , ) < ( , ) < ( , )M a b I a b M a b  (37) 

                                                          
2 2

0 1/2( , ) < ( , ) ( , ) < ( , )M a b L a b I a b M a b  (38)                                

                                                          

1 1

2 2
1 1

( , ) ( , ) < ( , ) < ( , ) ( , )
2 2

I a b G a b L a b I a b G a b                                 (39) 

                                                         

1 2

3 3
1 2

( , ) ( , ) < ( , ) < ( , ) ( , )
3 3

A a b G a b L a b A a b G a b  (40) 

 ( , ) (1 ) ( , ) < ( , ) < ( , ) (1 ) ( , )A a b G a b I a b A a b G a b        (41) 

  
2 2

,
3 e

    

 ( , ) (1 ) ( , ) < ( , ) < ( , ) (1 ) ( , )C a b H a b L a b C a b H a b        (42) 

  
1

0,
2

    

 ( , ) (1 ) ( , ) < ( , ) < ( , ) (1 ) ( , )C a b H a b I a b C a b H a b        (43) 

  
3 5

,
2 8e

    

For the derivation of the inequalities in (36)-(38) see [2, 11, 14, 15, 18], for the inequality in (39) see [1], for the inequality 

in (40) see [4, 10, 16], for the inequality in (41) see [3], and for the inequalities in (42)-(43) see [5].                                                                                                                                                       

REFERENCES 

[1] H. Alzer, Two inequalities for means,  C. R. Math. Rep. Acad. Sci. Canada, 1987, 9, 11-16. 

[2] H. Alzer, Ungleichungen für Mittelwerte,  Arch. Math. (Basel), 1986, 47, 422-426. 

[3] H. Alzer and S. L. Qiu, Inequalities for means in two variables,  Arch. Math. (Basel), 2003, 80, 201-215. 

[4] B. C. Carlson, The logarithmic mean,  Amer. Math. Monthly, 1972, 79, 615-618. 

[5] J. M. Chu, S. W. Hou and W. F. Xia, Optimal convex combinations bounds of centroidal and harmonic means for     
logarithmic and identric means,  Bull. Iranian Math. Soc., 2013, 39, 259-269. 

[6] M. S. Elnaggar and A. Kempf, Equivalence of partitions leads to classification of entropies and means,  Entropy, 
2012,  Article 14, 1317-1342. 

[7] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann,  
J. Math. Pures et Appl., 1893, 58, 171-215. 

[8] Ch. Hermite, Sur deux limites d'une intégrale définie,  Mathesis, 1883, 3, 82. 

[9] J. L. W. V. Jensen, Om konvekse Funktioner og Uligheder mellem Middelværdier,  Nyt tidsskrift for matematik. B., 
1905, 16, 49-68. 

[10]  E. B. Leach and M. C. Sholander, "Extended mean values II", J. Math. Anal. Appl., 1983, 92, 207-223. 

[11] T. P. Lin, The power mean and the logarithmic mean,  Amer. Math. Monthly, 1974, 81, 879-883. 

[12] J. Mićić, Z. Pavić, and J. Pečarić, The inequalities for quasiarithmetic means,  Abstr. Appl. Anal., 2012,  Article ID 

203145, 25 pages. 

[13]  Z. Pavić, Convex combinations, barycenters and convex functions,  J. Inequal. Appl., 2013,  Article 61, 13 pages. 



ISSN 2347-1921 

1723 | P a g e                              M a y  3 0 ,  2 0 1 4  

 

[14]  A. O. Pittenger, Inequalities between arithmetic and logarithmic means,  Univ. Beograd. Publ. Elektrotehn. Fak. Ser. 
Mat. Fiz., 1980, 678, 15-18. 

[15]  A. O. Pittenger, The symmetric, logarithmic and power means,  Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 
1980, 678, 19-23. 

[16]  J. Sándor, A note on some inequalities for means,  Arch. Math. (Basel), 1991, 56, 471-473.  

[17]  K. B. Stolarsky, Generalizations of the logarithmic mean,  Math. Mag., 1975, 48, 87-92.    

[18]  K. B. Stolarsky, The power and generalized logarithmic means,  Amer. Math. Monthly, 1980, 87, 545-548.   

 


