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Let   is a bounded open set in 
nR  and   0.>,0,= TTQT   We consider following initial boundary value 

problems  
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Problems of the form (1)-(3) arise as mathematical models of various applied problems, for instance reaction-drift-diffusion 
processes of electrically charged species phase transition processes and transport processes in porous media. 
Investigations of boundary value problems for second order degenerate elliptic-parabolic equations ascend to the work by 
Keldysh [1], where correct statements for boundary value problems were considered for the case of one space variable as 
well as existence and uniqueness of solutions. In the work by Fichera [2] boundary value problems were given for 
multidimentional case. He proved existence of generalized solutions to these boundary value problems. 

The equation (1) is degenerate because the function  tx,  and coefficient  txaij  can tend to zero. Initial boundary 

problems for degenerate parabolic equations have been studied by many authors (see for example [3], [4], [5], [6]). But the 
structure of the equation (1) is different from that one considered in these papers. Boundary value problems for the 
degenerate equation also were studied in the stationary case in [7] and in the nonstationary case in [8]. 

We consider problem (1)-(3) under standard conditions for the functions  txaij ,  and some conditions for the function 

 xta , . 

We formulate on assumptions in section 2. First a priori estimations for solutions you are given in Section 3. We assume 

following regularity condition on the boundary   of the set  . There exist positive numbers  ,, 0R  such that for an 

arbitrary point x  the inequality means    nRRxB \,  holds, where 0<0 RR   and  RxB ,  is a ball 

of radius R  with center .x  

Let the coefficients from (1)-(3) satisfy following assumptions.  txaij ,  a real symmetrical matrix and for any 

  TQtx ,  and 
nR  the following inequality are true 
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where       njitxbtxctxa iij 1,=, ,,  , ,,  (0,1]  are measurable functions with respect to xt,  for every 
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Assume that the following conditions are true for the weighted functions 

        tTtxtx  =,  

where   pAx   satisfy Muckenhoupt condition (see [9])   0t   
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where  positive constants. 
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We consider problem (1)-(3) which data such that  

           

 1

1

1 ,0,,0,, WTLWTLQLxtf T  

                              



LTL

t

f
,0,1

                                                (8)

 

                                     Lxh
                                                      (9)

 

We introduce some space of functions in TQ  with finite norm  
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 hold for arbitrary functions 
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Remark 1. Let u  be a solution of problem (1)-(3). Since the set of functions from 
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 Besides of (1) use consider the regularized equation, where instead          ,,=, ,= txtxxx    
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Everywhere further we consider the case when   0>z  at 0.>z  If    0 z then the equation (1)-parabolic. 

We understand solution of the auxiliary problem (1)-(3) with weight  ,x   tx,  in the sense of definition 

solution after replacing  x  and  tx,  by    ., , txx    

In what follows we understand as known parameters all numbers from the conditions, norm of functions  xf ,  in 

respective spaces and numbers that depend only on    .,, ,, , , 0 txxRn
'

   

Theorem 1. Let the conditions (4)-(9) be satisfied. Then there exists a constant 1M  depending only on known parameters 

and independent of (0,1]  such that each solution u  of problem (1)-(3) with weight    txx ,,    satisfies 
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Proof of Theorem 1. Let  xtu ,  be the solution regularized problem (1)-(3). We extend function  xtu ,  by setting 

   xxtu =,  for . 0,< xt  Denote 
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Hence we get by simple calculation 
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where denote by  xv0  the solution of problem (1)-(3) for 0=t  with  xu 0,  defined by (3). 

Dividing this equality by s  and passing to the limit 0s , we obtain for almost every  T0,  and doing some 

calculations 
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Using (10) we can write in (15)  
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Here and in what follows iC  denote constants depending only on known parameters. The conditions (8), (9) and Remark 1 

allow us to substitute 

126

= u  in the regularized identity (10). 

By (16) this gives 
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We write the first integral from (17) in the form  
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Then we can evolute the first and the second integral of the right hand side of (18) by using Lemmas 2,1 respectively [9]. So 
we obtain  
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Immediately from the definition of    . , 21 uu   We deduce 
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for 0u  with arbitrary positive number   and a constant c  depending only on 1 and the functions    .,, txx   

Using the condition (4)-(6), (8)-(9) and the conditions on    txx ,,  and the inequality (20), we obtain with arbitrary 

positive number 1  and some function    TLt 0,1  
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We estimate terms in (17) involving the function   in standard way by using (4)-(6), (8)-(9). Now from (17), (19), (21) and 

evident estimates for another terms in (19), we obtain  
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Now the last inequality and Gronwall’s lemma complete the proof of Theorem 1. 

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then there exists a constant ,2M depending only on known 

parameters and independent of  ,0,1  such that each solution of regularized problem (1)-(3) satisfies 
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In order to prove Theorem 2 we need auxiliary estimates. 

Lemma 1. Assume that the conditions of Theorem 1 are satisfied and following inequality 
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and with a constant 2K  depending only on known parameters. 
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From this inequality and the embedding theorem we have 
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Taking into account the restriction on q  and the choice of p  we deduce (25) from (28), (29), (13) and the proof is 

completed. 
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Here we used (25) and the inequality  
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where the last integral can be estimated analogously to (35). 
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Choosing 0,=  the inequalities (13), (34) and condition (8) imply 
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We estimate 3I  by Young’s inequality and condition (8), obtain 
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the integral with u  and  =


 in (40) can be also estimated by a constant because of the inequality (39). In the opposite 
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Lemma 3. Assume that the conditions of Theorem 2 are satisfied. Then there exist numbers 3
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for .> 0mu  Here  ksSk ,min=  and the value of u  is analogous. We write the derivative of   in the form 
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where  kum <<0  is the characteristic function of the set  kum <<0  and the function  u
r126

  satisfies for 

3

2
> r  the estimate 
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with    ,31,2min= rrk   
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Using (50)-(53) and conditions (4)-(6), (8) we obtain from (10) with the function   defined  by (49) 
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Let us assume now that for some  
2

,
1

2














n
q




the inequality (43) is fulfilled. Then we obtain from Lemma 2 that the 

first integral of the right hand side of (55) can be estimated by a constant independent on k  for  .3
2

1
= qr  We 

shall check now that the second integral of the right hand site of (55) for  '

qr 3
3

1
=  and some positive 

'

  

depending only on   can be also estimated by a constant independent on .k  Analogously to inequalities (38), (39) we 

obtain from (43)  
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From (43) and Lemma 1 we have 
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(56), (57) imply the needed estimate for the last integral in (55) provided 
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For that purpose it is sufficient to chose .
1

=







'

 We proved that for  '

 ,min=
_

 the left hand side of (55) is 

estimated by constant depending only on known parameters if .3
3

1
=

_









 qr  This estimate implies that the 

inequality (43) is fulfilled with 

_

q  instead of .q  We can guarantee also by small change of 

_

  that the number 



















 1

2

2

1 n
 is not integer, and denote by N  its integer part. Recalling that the estimate (43) is fulfilled with 









1

2
== 0qq  and choosing the sequence .=

_

0 iqqi   We obtain after 1N  iterations our previous discussing 

that the inequality (43) is fulfilled with .
2

>= 1

n
qq N  onsequently the inequality (48) is satisfied with 

1

_

Nq and this ends 

the proof of Lemma 3. 

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then the estimates  

                      
    

''''''

T
QL

xxMxtuxtuMtxu 


43 ,,  ,,
                (58)

 

hold for arbitrary  ,0,t  " , xx
'

 with  0,1  and constants ,3M  ,4M    depending only on known 

parameters and independent of .  

Proof. The result of Theorems follows immediately from the estimates (30), (48), the conditions (4)-(6), (8) and the 

assumption on the set .  It is necessary to apply only well known results on regularity of solutions of elliptic equations to 

equation (1) (see, for example, [5]).  
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Theorem 4. let the conditions (4)-(6), (7), (8)-(9), (31), (59) be satisfied. Then there exists a constant ,5M depending only 

on known parameters and independent of ,
1

0,
5











M
  such that each solution of problem (1)-(3) satisfies  

                              5,:,sup MQxtxtuess T 
                                    (60)

 

Theorem 5. Let the conditions (4)-(6), (7), (8)-(9), (31) (59) be satisfied. Then the initial-boundary value problem (1)-(3) has 
at least one solution in the sense of (10). 

Theorem 6. Let the conditions (4)-(6), (7), (8)-(9), (31), (59) be satisfied and assume  additionally that the functions 

     txctxbtxaij ,,, ,,  are locally Lipschitzian with respect to .x  Then the initial-boundary value problem (1)-(3) has a 

unique solution. 

For proof we use. Proof of existance of solutions.  

Theorem 4. We consider for 








5

1
=

M
  the initial boundary value problem (10). By Theorem 4 arbitrary solutions u  of 

modify problem (10) satisfy the a priori estimate (60). We see that a solution of modify problem with 

5

1
=

M
  is 

automatically a solution of problem (1)-(3). 

Proof of uniqueness. 

For proving the uniqueness of the solution for problem (1)-(3) we assume that there exists two solutions ., 21 uu  By 

Theorem 2, 3, we have for 1,2=j  
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with some constant .M  

The proof of Theorem 6 will be given in four steps corresponding to four different choices of test functions in the integral 
identities (10) 

First step. We test (10) for 1= uu  
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            and for 2= uu  with .= 212 uu   

The result we obtain 
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Second step. We test the integral identity (10) for 1,2= ,= iuu i  with .= 212 uu  Taking the difference of the 

obtained equalities, applying condition (4)-(6) and the inequalities of Cauchy and Poincare, we get  
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Third step. We test the integral identity (10) for 1= uu  with  

                        
 

      213 expexp,
1

= NuNutx
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and for 2= uu with 

                           2214 exp= NuuuN
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where N  is a positive number depending only on known parameters and satisfying 

         1,2,2 22  tstsNssN
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 Ms   

with the constant M  from (61). Finally we obtain 
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Fourth step.  Let  xj  Jj 1,...=  be a partition satisfying the conditions 
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where  RxB j ,  is a ball of radius R  with to be fixed chosen later on. We the integral identity (10) for 1= uu  with 
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After some calculations imply immediately 
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Proof of Theorem 6. Applying Cauchy’s inequality to the term in (62) involving the derivative of 1u  and choosing a suitable 

value of ,R  we obtain from (69), (66), (62), (63) 
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We estimate the integral on the right hand site of (70) by Holders inequality and use condition on ,  to get 
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for an arbitrary  .0,T  Estimating the first integral on the right hand site of (71) by Holders inequality, using the 

embedding  
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11 2=  , we find for arbitrary  0,1  and a 

constant 33C  depending only on n  
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In analogous way we estimate the last integral in (71). We define   to be solution of the equation  
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We find  
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The inequalities (71)-(73) imply with suitable   
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for arbitrary  .0,   Finally, Gronwall’s lemma yields .= 21 uu
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