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ABSTRACT

In this paper, we present a Sturm Liouville problem which has discontinuities in the neighborhood of the midpoint of an
interval and a boundary condition depending on an eigenparameter. We derive operator theoretic formulation in suitable
Hilbert space, give some properties of the eigenvalues and obtain asymptotic formulas for the eigenvalues and the

corresponding eigenfunctions.
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1 INTRODUCTION

The Sturm Liouville theory is one of the most actual and extensively developing fields of theoretical and applied
mathematics. In recent years, highly important results in this field have been obtained for classic Sturm Liouville problems
(' see [1-4]) and discontinuous Sturm Liouville problems which has transmission conditions at one, two or several points of
discontinuity (see [5-8], [9-11] and [12-14], respectively].

We consider the boundary value problem

r(u)=—u"(x)+q(x)u(x)=4u(x), xel, (1.2)

with boundary conditions

B,(u)=pu(a)+pu'(a)=0, (1.2)

B, (u) = 2(cqu(b)—a,u'(b))+equ(b)—ayu’(b) =0, (13)
and transmission conditions
T, (u)=u(@,-)-du(6,+)=0, (1.4)
T, (u)=u'(@,-)-su'(6,+)=0, (1.5)
T, (u)=6u(d,-)-ru(@.,+)=0, (1.6)
T, (u)=6u'(6,-)-ru'(6,+)=0, (L.7)

where | =[a,¢9_5)u(0_5,49+ ) (
which is continuous in [a,H_g) (0 o ) and (6’+g,b] and has a finite limit q(6[£ i): lim q(x) and

+‘g,b] A is a complex spectral parameter; q( ) is a given real-valued function,

& 1 .

X=>0_,
q(6,, +)= I|m q( )i B.a, .5,y (i=1,2) are real numbers such that §#0,7 #0; & is a parameter
suchthat0<8<( )/ (a+b)/2 L= (9i8)i0 and
o= (aiaz —ala'z) >0. (1.8)

In this paper, we present a problem which has points of discontinuity in the neighborhood of the midpoint of an interval
to different from the studies in the literature. & is a parameter controling the change of neighborhood process (it can be
called tuning parameter) and by using the change of this & parameter it's possible to determine points of discontinuity.

That is, two points of discontinuity can be determined in the interval [a,b] for each & value in the interval
O<¢ <(b—a)/2. For example, let a=—-1,b=4 sothat @ and & parameter's interval are @ =3/2 and
0<&<5/2; points of discontinuity are & , =1 and 8,, =2 for ¢ =1/ 2, points of discontinuity are € , =—1/2
and QE =7/2 for £ =2, etc. The main result is that points of discontinuity can be moved by changing & parameter,
so that they can be called moving discontinuity points. In the special case for our problem when a=0, b=7 and
e=d (O< d< 7[/2) is derived in [15,16] ( the problems in these works do not contain an eigenparameter in the

boundary conditions).

Firstly, we derive operator theoretic formulation in suitable Hilbert space such a way that the considered problem can
be interpreted as the eigenvalue problem of this operator, then we give some properties of the eigenvalues and the
eigenfunctions and finally we obtain asymptotic formulas for the eigenvalues and the corresponding eigenfunctions
depending on & parameter.

2 OPERATOR-THEORETIC FORMULATION

To formulate a theoretic approach to the problem (1.1)-(1.7) we define the Hilbert space H =1L, (a,b)@D with an

inner product
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F()G()>H = T f(x)ﬁ(x)dx+52:jf f (x)§(x)dx+72j f(x)ﬁ(x)dx+%h§, 2.1)
where F(X)Z(f f‘lX)j’G(X):[gE(X)je H, f(.),g(.)e Lz(a,b) and h,k €[] . For convenience we put
R(u)=au(b)-a,u'(b), R'(u)=au(b)—a,u'(b). (22)
For function f(X), which is defined on [a, ) (19 , ) ( et ] and has finite limit
f(@_gi)izxﬂgnif(x)and f(@ +)—XEL’Eif(X), by f ( ),f ( )andf ( ) we denote the
f(x), xela,b.,), f(x), xe(6.,.6.,),
=] 2By 10 xele0)
. f(0.,+) x=0, f(0,,+) x=0,,
I e e H
which are defined on | _[a, (9_6], I, = [9_6,(9 ]andl —[Qrg,b], respectively.

f .
Let D(A) c H bethesetofall F (X) = [R'E);))j € H such that f(i) (), f(i) () are absolutely continuous in

1,(1=1,2.3), r(f)eL,(ab), h=R'(f)and B,()=0, T, (f)=T,.(f)=0.

Define the operator A D(A) — H by

)[R (wn)=o® “

The eigenvalues and the eigenfunctions of the problem (1.1)-(1.7) are defined as the eigenvalues and the first
components of the corresponding eigenelements of the operator A, respectively.

Theorem 2.1 The operator A in H is symmetric.

Proof. For F (),G() I= D(A)

(A (.60, = [ #(F ()30 o [ o(F ()3 ()= 7 [ £(1 (x)a(x)ex-
a 0., 0., 2.9)
%R(f)R'(ﬁ)

(AR ()60, ~(F () AG(), +W( £, 0., -)-w( . Gia) soW(1.5i0, )
52\N(f A +)+y2VV( f,g;b )—72VV(f,§;¢9+8+)— 2.5)
2 (R(IR(E)-R1(1)R(3)),

where, as usual, by W ( f, g; X) we denote the Wronskian of the functions f (X) and g (X)
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W(f,g;x)=f(x)g'(x)—f'(x)g(x). (2.6)

Since f (X) and E(X) are satisfied the boundary condition (1.2),(1.3) and the transmission conditions (1.4)-(1.7), we
get

W(f,a;a)=o, 2.7)

W(f,g;0,-)=6W(f,g;0,+), (2.8)

_ 2
W(f,g:éﬁg—)—gzw(f 60, +). 2.9)
2 — — p—
~(RODR(@-RDR@) =7 W(f.g:D). 210

Finally substituting (2.7)-(2.10) in (2.5) then we have
(AF(.),G(.),, =(F(.).AG(.)),. (2.11)

thus the operator A is Hermitian. The symmetry of A arises from the well-known fact that D(A) is densein H .
Corollary 2.2 All eigenvalues of the problem (1.1)-(1.7) are real.
We can now assume that all eigenfunctions of the problem (1.1)-(1.7) are real valued.

Corollary 2.3 Let 21 and ﬂ,z be two different eigenvalues of the problem (1.1)-(1.7). Then the corresponding

eigenfunctions U, and U, of this problem are orthogonal in the sense of

eful(x)uz(x)dXJrgz:jfu( x)dx+yj x)dx+— '(u;)R'(u, ) =0. (2.12)

3 CONSTRUCTION OF FUNDAMENTAL

Now we will construct a special fundamental system of solutions of the equation (1.1). Let us consider the next initial value
problem:
—u"(x)+q(x)u(x)=4au(x), xe(ab.), 3.1)

u(a)=p, u'(a)=-4 . (3.2)
By virtue of Theorem 1.5. in [17], this problem has a unique solution U :¢7m1 (X) = ¢7£ (X,/1), which is an entire

function of A €[] for each fixed X € [a, 0—5] . Similarly, employing the same method as in proof of Theorem 1.5.in [17],

we see that the problem

u

() +a(x)u(x)= 2 (x), x<(0,.b). @
(

b)=Ac,+a,, U'(b)=Aa+a, (3.4)
has a unique solution U=y, (x)=;5+g(x,ﬂ) which is an entire function of parameter A for each fixed

Xe[@ b]

+&!

Now the function ¢s,/1 (X) is defined in terms of ¢7£'/1 (X) as follows: the initial-value problem,

—u"(x)+q(x)u(x)=Au(x), xe(6,.6,,). (3.5)
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u(@.,)=6".,,(0.-), u(0,)=0"¢.,(0.-). (3:6)

which contains the entire functions of eigenparameter A, has unique solution U =¢‘M(X)=¢E(X,/1) for each

A €l . Also the function ¢+‘M (X) is defined in terms of ¢s,/1 (X) as follows: the initial value problem

—u"(x)+q(x)u(x)=Au(x), xe(6.,.b). (3.7)
0 ' e, —~ 3.8
U(9ﬂ»)=;¢g,a(6’+g—), U(6’+8~)—7¢M(6’+5 ). (38)

which contains the entire functions of eigenparameter A, has unique solution U=¢, . (X) =9, (X,ﬂ) for each

Ael .

Similarly, the function Xea (X) is defined in terms of Kiea (X) as follows: the initial-value problem,

—u"(x)+q(x)u(x)=Au(x), xe(b,.6.,). 3.9)
u(é,,)= %Zm (0.+), u'(o,)= gﬂt'w (6. +). (3.10)

has unique solution U =;(M(X)=)(‘g (X,l) for each A €[] . And the function ;(_M(X) is defined in terms of

Ko (X) as follows: the initial-value problem,
—u"(x)+q(x)u(x)=Au(x), xe(ab.), (3.11)
u(@,)=or.,(0.+), u'(0,)=58.,(6,+). (3.12)

has unique solution U= y_, (X) =7, (X,/I) foreach A ell .

Let us construct two basic solutions of equation (1.1) as

é.,(x), xelad.,), 2...(X), xe[ad.,),
¢/1(X): ¢M(X)’ XE(QS,HH), ZA(X)Z L»,A(X)’ XE(QE,HM), (3.13)
$...(X), xe(6,.b], Zooa (%), x€(0,,.b].

Since the Wronskians W (¢gmlg,z; X) and W (¢ig,wl¢m; X) are independent of variable X € I, (i k1 2,3)

and @, , (X), 2., (X). 9., , (X)s ey, (X) are the entire functions of the parameter A for each X € I, (i =1,2,3),
the the functions

o_,(A)=W (4, 2...%), xe[a,6.,],
®,(2)=W(4,,.7.,:X), xe[6.,.0.,], (3.14)
o, (1) =W (4., 7..,:X), xe[0,,.b],
are the entire functions of parameter A .
After short calculation we see that @_, (1) =87, (1) =y’ @, (A). Now we may introduce characteristic function
() as

o(A)=aw_ (1)=560,(1)=r0,, (). (3.15)
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Theorem 3.1 The eigenvalues of the problem (1.1)-(1.7) are coincided zeros of the function a)(l) .

Proof. Let a)(ﬂo) =0. Then W (¢_81%,;(_8’20 ; X) =0 and so the functions ¢ , (X) and ¥, (X) are linearly

dependent, that is,

Koon (X)=ké . (X), xe[a,6.], for somek 0. (3.16)

Consequently, Zﬂo (X) satisfied the boundary condition (1.2), so the function ;(/10 (X) is an eigenfunction of the problem

(1.2)-(1.7) corresponding to the eigenvalue /10 .
Now let U, (X) be any eigenfunction corresponding to the eigenvalue /10 , but a)(/'lo) 0.

Then the functions ¢, , (X) Koo (X) and @,, (X) Xecs (X) are linearly independent on |, (i =1,2,3) . Thus,

Uy (X) may be represented as in the form

cl¢_g’%(x)+c2;(_gjo(x), xela,f.,),
Up(X)=1Ch, . (X)+Cox,, (X), x€(6.,.6.,), (3.17)
Cofyosy (X)+Couss, (X), x€(6,,,b],

where at least one of the constants C; ( =1, 6) is not zero. Considering the equations

B, (U, (X)) =0, B, (Uy(x))=0, T, (uy(x)) =0, T, (us(x)) =0, (3.18)

as the homogenous system of linear equations of the variables C, (i :1,6) and taking into account (3.6), (3.8), (3.10)

and (3.12), it follows that the determinant of this system is

0 o, (2) 0 0 0 0
bi (Dot) Zos(bot) —Bs(Bot) s (6.+) 0 0
6., (¢.4) x,(8.+) 4, (4.4) —x (.7) 0 0
0 0 Boo (Dec ) Hoosy (B ¥) Do (Be¥) ~Xeon (B F)
0 0 8. (b.%) 1. (8.%) ¢ _(0.+) —x_ (¢.%)
0 0 0 0 a)ﬁ(ﬂ@) 0
=-a_, (h)o, (%), (%) 0.

Thus, the system (3.18) has only trivial solution C; = 0, (i =1, 6) and so we get contradiction which completes the proof.

Lemma 3.2 All eigenvalues A, are simple zeros of a)(}t) .

Proof. Using the well-known Lagrange’s formula it can be shown that

[J‘@ dx+52I¢l ¢, (x)dx+y° I@ é, (x )de_yzvv(@,@n ) (3.19)

forany A . Since
2, (X)=kg, (x), xe[a,6.,)u(8.,.6,,)u(6,,,b], for somek, =0, (3.20)

then
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W (¢;.¢,:b)=—W (4, z.:b)

(’1 R’ (¢ﬂ)+R(¢A))

(3.21)

substituting (3.21) in (3.19) and letting A —> A, we get

2

eg‘(@ﬂ( )) dx+§2J.(¢zﬂ( )) dx+y2j (@n(x))zdx:i_(a)'(ﬁn)—R'(@n)). (3.22)

n

Now putting
3
(‘/%) (Zﬂn ) = kﬁ : (3.23)
in (3.22) it yields a)'(ﬂn ) # 0, which completes the proof.

4 ASYMPTOTIC FORMULAS FOR EIGENVALUES AND EIGENFUNCTIONS

Now we derive asymptotic formulas of the eigenvalues and eigenfunctions similar to the classical techniques of [3,6,9,17].
We begin by proving some lemmas.

Lemma 4.1 Let ¢/1 (X) be the solutions of equation (1.1) defined in Section 3. Then the following integral equations
hold for K=0 and k =1:

%qﬁm(x) ,B(;jk cos/A (x- a)———s'”fx a) J—f S'”fx Y)a(y)e-...(y)dy

7 dx
(4.1)
= = L 1 4 dk
W@,ﬂ(x):g(/ﬁ_m(@_g—)—kcosﬁ(X—H_gﬁmqﬁ_g,ﬂ(9_5—)Wsmﬁ(x_e_‘gﬁ
h (4.2)
le f —ks'” =Y)a(y) .. (y)dy,
dk S s
W@”(X):; m( +g—) cos\/_(x 0. ) ﬁ(ﬁm( —) Sln\/_(x 0. )
4.3)

} f —5'” x=Y)a(y)d,..(y)dy.

Proof. For proving it is enough substitute A¢_, , (y)+¢:g’1(y), /l(/ﬁm(y)+ M(y) and A¢,, , (y)+ ;M(y)
instead of CI(Y)¢_5,,1 (y) Q(Y)¢M (y) and q(y)¢+gll (y)in the integral terms of the (4.1)-(4.3), respectively, and

integrate by parts twice.

Lemma 4.2 Let Im\/I:t. Then the functions ¢im(x) and ¢M(X) have the following asymptotic

representations for |/1| —> 00, which hold uniformly for X € I, (i =12, 3):
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%;ﬁ_m (X)= 4, %cos Z(x-a) +o((ﬁ ) e‘(“") , (@)
% . (X) =%%COS /1(x—a)+0((ﬁ)k_l et(x‘a)j, (4.5)
;X‘i L )—%jkk cos }t(x—a)+0((ﬁ)klet(”)), @6
it #,#0,
%qj_g’i(x):—%j%sin i(x—a)+0((\/z)k_zet(x‘a)), a.7)
% » (x):—gﬁz%sin /1(x—a)+o((ﬁ)“ e‘(“‘)j, (4.8)
s () :-y% sV (x-a) +o((JﬂT)k2 e““‘)j, “9)
it #,=0.

Proof. The proof of the formulas is identical to Titchmarsh’s proof of similar results [6,9,17].

Lemma 4.3 Let Im«/Z =1 . Then the characteristic function (0(/1) has the following asymptotic representations:

Casel. 3, #0, 0{1'7&0 g

(1) = Ae, By sin\Z (b-a)+0( 26" ), (4.10)

case2 f3,#0, ¢, =0:
(1) =Aa, By cosﬁ(b—a)+o(ﬁe“‘(b‘a)), (4.12)

Case3. 3, =0, ¢, #0 :
w(A) =ﬂal'ﬁlycos\/z(b—a)+0(ﬁe“‘(b‘a)), (4.12)

Case4. 3,=0, ¢, =0:
w(2)=—2a,Bysin «/Z(b—a)+0(e“‘(b‘a)) , (4.13)

Proof. The proof is immediate by substituting (4.6) and (4.9) into the representation

o(2)=7*((Ae, + ;) .., (b)~(Aey+ ) 4., , (b)) (4.14)

Corollary 4.4 The eigenvalues of the problem (1.1)-(1.7) are bounded below.
Now we can obtain the asymptotic approximation formula for the eigenvalues of the considered problem (1.1)-(1.7). Since
the eigenvalues coincide with the zeros of the entire function a)(ﬂ) , it follows that they have no finite limit. Moreover, we

know from Corollaries 2.2 and 4.4 that all eigenvalues are real and bounded below. Therefore, we may renumber them
as Ay <A <A,,..., listed according to their multiplicity.

Theorem 4.5 The eigenvalues in,n:O,l,Z,..., of the problem (1.1)-(1.7) have the following asymptotic
representation for N —> 00:
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Casel. f3, #0, 0{1'7&0 :

Case2. f3, #0, a1'=0:

Case3. 3,=0, o, 20 :

Case 4. 3, =0, alle:

(4.15)

(4.16)

4.17)

(4.18)

Proof. We will only consider the first case. We will apply the well-known Rouche theorem, which asserts that if f (ﬂ)

and g(ﬂ,)are analytic inside and on a closed contour C and |f(/1)|>|g(ﬂ)| on C, then f(l) and

f(}t)+g(l) have the same number of zeros inside C, provided that each zero is counted according to its

multiplicity. It follows that a)(/i) has the same number of zeros inside the contour as the leading term in (4.10). If

Ay <A £ A,,..., are the zeros of a)(/l) , we have

ﬁ:(n_l)(bfa)+§n

where |§n| < ﬁ

case 1. The proof for the other cases is similar.

Then from (4.4)-(4.9) (fOI‘ k= 0) and the above theorem, the asymptotic behaviour of the eigenfunctions

b4 (%), xe[a0.,),
¢, (x)=14., (x), xe€(6..0,,),
¢.., (x), xe(0,,.b],

of the problem (1.1)-(1.7) is given by

it B,#0, a, 20,
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1
for sufficiently large N. By putting in (4.10) we have & = O(— , so the proof is completed for
n

(4.20)

2014



ISSN 2347-1921

5 ((n(—l_ ) _a)}o(%j, celas.),
0.0 ool G a0 ) netoa, MAE0ATO
%cos((n(:_/:))ﬁ(X—a)JJFO[%j’ xe(6,..b],
e ol
0| ] B ol o 40070
e een)ro[) et
IR ) +o[% xe[ad.,),
g 00 =120 ein| s (-) <0 L xe(@.00,). ¥ A0 GO
_ﬂlg;;anm ) +o[%  xe(0,,.b],

All these asymptotic formulas hold uniformly for X .
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