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1. Introduction:  

       Let  na  be a given infinite series with sequence of partial sums  ns . Let  nt  denote the sequence of 

),,( qpN   mean of the sequence ns . Then  nt is defined as follows: 
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(1.2)                               ,stn  as n  ,  

then the series  na  is said to be ),,( qpN  summable  to s  . 

The necessary and sufficient conditions for the regularity of ),,( qpN method are: 
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where H is a positive number independent of n .The sequence –to-sequence transformation [1],   
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defines the sequence  nT   of the  rE,   mean of the sequence   ns . If 

(1.6)                      sTn   , as n ,    

then the series  na  is said to be  rE,  summable to s .Clearly   rE,   method is regular[1].  

Further, the  rE,  transform of the ),,( qpN  transform of  ns   is defined by  
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(1.7)                       
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If  

(1.8)                     sn    , as n , 

then  na  is said to be   qpNrE ,,, -summable to s .   

           Let )(tf   be a periodic function with period 2 , L-integrable over (-,), The Fourier series associated with f  

at any point x is defined by  
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(1.9)    
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and its conjugate series is  

(1.10)   
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Let  xfsn ;  be the n-th partial sum of the series given by (1.10).The L -norm of a function  RRf :  is defined 

by  

(1.11)                        Rxxff 


:)(sup  

and the L -norm is defined by  

(1.12)                   
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The degree of approximation of a function RRf :  by a trigonometric polynomial )(xPn  of degree n under norm  


.  is defined by  

(1.13)     RxxfxpfP nn 


:)()(sup     

and the degree of approximation  )( fEn  of a function  Lf   is given by  

(1.14)    
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This method of approximation is called Trigonometric Fourier approximation. 

 A function  Lipf    if  

(1.15)      10,)()(  


tOxftxf .  

            We use the following notation throughout this paper: 
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Further, the method   qpNrE ,,,  is assumed to be regular and this case is supposed throughout the paper. 

2. Known Theorems: 

         Dealing with the degree of approximation by the product    1,, CqE -mean of Fourier series, Nigam et al [3] 

proved the following theorem. 

Theorem 2.1: 
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If  a function  2f is  - periodic  and of  class Lip , then its degree of approximation by    1,, CqE  summability  

mean  on its Fourier series 
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represents the   qE,   transform of  1,C  transform of  xfsn ; . 

Subsequently Misra et al [2] have proved the following theorem on degree of approximation by the product mean  

  , , nE q N p   of the conjugate series  1.10 of the Fourier series  1.9 . 

Theorem 2.2: 

If  f  is a  2  Periodic function of class Lip , then degree of approximation by the product 

  , , nE q N p  summability  means on the conjugate series of its Fourier series (defined above) is given by 
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Ofn  ,   where  n  as defined in (1.7) . 

3. Main theorem:  

In this paper, we have proved a theorem on degree of approximation by the product mean    qpNrE ,,,   of 

the Fourier series of a function of class Lip  .  We prove:  

Theorem -3.1: 

 If  f  is a  2  Periodic function of the class  rLip , , then degree of approximation by the product 

  qpNrE ,,,  summability means on its Fourier series (1.9) is given by, 
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4. Required Lemmas: 

    We require the following Lemma for the proof the theorem. 

Lemma -4.1: 
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Proof of Lemma-4.1:  
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This proves the lemma.  

Lemma-4.2: 

                           










 t

n
for

t
OtKn

1

1
,

1
)( . 

Proof of Lemma-4.2: 
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This proves the lemma. 

5. Proof of Theorem 3.1: 

             Using Riemann –Lebesgue theorem, for the n-th partial sum  xfsn ;  of the Fourier series (1.9) of )(xf  and 

following Titchmarch [4], we have 
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Using (1.1),  the  qpN ,,  transform  of  xfsn ;  is given by  
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Denoting the    qpNrE ,,,  transform of  xfsn ;  by n , we have  
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Now  
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Then  from (5.2) and (5.3) , we have  
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This completes the proof of the theorem.                                                                           
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