

Degree of approximation of Conjugate Series of a Fourier Series by

(E,r)(N,p,q) Means B. P. Padhy ¹, U. K. Misra², Mahendra Misra³ and Santosh Kumar Nayak⁴ ¹Department of Mathematics, Roland Institute of Technology Golanthara-761008, Odisha, India ²Department of Mathematics, National Institute of Science and Technology PallurHills-761008, Odisha, India ³Department of Mathematics, Binayak College,Berhampur Odisha, India ⁴Department of Mathematics, Jeevan Jyoti Mahavidyalaya, Raikia Khandamal, Odisha, India

Abstract: In this paper a theorem on degree of approximation of a function $f \in Lip \alpha$ by product Summability (E, r)(N, p, q) of conjugate series of Fourier series associated with f, has been established.

Keywords: Degree of Approximation; $Lip \alpha$ class of function; (E, r) mean; (N, p, q) mean; (E, r)(N, p, q) product mean; conjugate Fourier series; Lebesgue integral.

2010-Mathematics subject classification: 42B05, 42B08.

Council for Innovative Research

Peer Review Research Publishing System

Journal: Journal of Advances in Mathematics

Vol 9, No 2

editor@cirjam.org

www.cirjam.com, www.cirworld.com

CORE

hrought to you by

ISSN 2347-192

1. Introduction:

Let $\sum a_n$ be a given infinite series with sequence of partial sums $\{s_n\}$. Let $\{t_n\}$ denote the sequence of (N, p, q) mean of the sequence $\{s_n\}$. Then $\{t_n\}$ is defined as follows:

(1.1)
$$t_{n} = \frac{1}{r_{n}} \sum_{\nu=0}^{n} p_{n-\nu} q_{\nu} s_{\nu},$$

where

$$r_n = p_0 q_n + p_1 q_{n-1} + \ldots + p_n q_0 (\neq 0)$$

 $p_{-1} = q_{-1} = r_{-1} = 0$

$$(1.2) t_n \to s , \text{ as } n \to \infty$$

then the series $\sum a_{\scriptscriptstyle n}$ is said to be (N,p,q) summable to ${\it \ s}$.

The necessary and sufficient conditions for the regularity of (N, p, q) method are:

(1.3) (i)
$$\frac{p_{n-\nu}q_{\nu}}{r_n} \to 0$$
, as $n \to \infty$ for each integer $\nu \ge 0$

and

where H is a positive number independent of n. The sequence –to-sequence transformation [1],

(1.5)
$$T_n = \frac{1}{(1+r)^n} \sum_{\nu=0}^n \binom{n}{\nu} r^{n-k} s_{\nu}$$

defines the sequence $\{T_n\}$ of the (E, r) mean of the sequence $\{s_n\}$. If

(1.6)
$$T_n \to s$$
, as $n \to \infty$,

then the series $\sum a_n$ is said to be (E, r) summable to *s*.Clearly (E, r) method is regular[1]. Further, the (E, r) transform of the (N, p, q) transform of $\{s_n\}$ is defined by

$$\tau_n = \frac{1}{(1+r)^n} \sum_{k=0}^n \binom{n}{k} r^{n-k} T_k$$

(1.7)
$$= \frac{1}{(1+r)^n} \sum_{k=0}^n \binom{n}{k} q^{n-k} \left\{ \frac{1}{r_k} \sum_{\nu=0}^k p_{k-\nu} q_{\nu} s_{\nu} \right\}$$

lf

(1.8)
$$au_n \to s$$
 , as $n \to \infty$,

then $\sum a_n$ is said to be (E,r)(N,p,q)-summable to s .

Let f(t) be a periodic function with period 2π , L-integrable over (- π , π), The Fourier series associated with f at any point x is defined by

(1.9)
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x)$$

and its conjugate series is

(1.10)
$$\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) \equiv \sum_{n=1}^{\infty} B_n(x)$$

Let $\bar{s}_n(f; x)$ be the n-th partial sum of the series given by (1.10). The L_{∞} -norm of a function $f: R \to R$ is defined by

(1.11)
$$\left\|f\right\|_{\infty} = \sup\left\{\left|f(x)\right| : x \in R\right\}$$

and the L_{ν} -norm is defined by

(1.12)
$$||f||_{\upsilon} = \left(\int_{0}^{2\pi} |f(x)|^{\upsilon}\right)^{\frac{1}{\upsilon}}, \upsilon \ge 1.$$

The degree of approximation of a function $f: R \to R$ by a trigonometric polynomial $P_n(x)$ of degree n under norm $\| \cdot \|_{\infty}$ is defined by

(1.13)
$$||P_n - f||_{\infty} = \sup\{|p_n(x) - f(x)| : x \in R\}$$

and the degree of approximation $E_n(f)$ of a function $f \in L_v$ is given by

(1.14)
$$E_n(f) = \min_{P_n} \|P_n - f\|_{\nu}$$

This method of approximation is called Trigonometric Fourier approximation.

A function $f \in Lip \ \alpha$ if

(1.15)
$$|f(x+t) - f(x)| = O(|t|^{\alpha}), 0 < \alpha \le 1.$$

We use the following notation throughout this paper:

(1.16)
$$\psi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) \},$$

and
$$\overline{K_n}(t) = \frac{1}{2\pi (1+r)^n} \sum_{k=0}^n \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_n} \sum_{\nu=0}^k p_{k-\nu} q_{\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right) t}{\sin \frac{t}{2}} \right\}$$

and

Further, the method (E, r)(N, p, q) is assumed to be regular and this case is supposed throughout the paper.

2. Known Theorems:

Dealing with the degree of approximation by the product (E,q)(C,1)-mean of Fourier series, Nigam et al [3] proved the following theorem.

Theorem 2.1:

If a function f is 2π -periodic and of class $Lip \alpha$, then its degree of approximation by (E,q)(C,1) summability mean on its Fourier series $\sum_{n=0}^{\infty} A_n(t)$ is given by $\left\|E_n^q C_n^1 - f\right\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1$, where $E_n^q C_n^1$ represents the (E,q) transform of (C,1) transform of $\overline{s_n}(f;x)$.

Subsequently Misra et al [2] have proved the following theorem on degree of approximation by the product mean $(E,q)(\bar{N}, p_n)$ of the conjugate series (1.10) of the Fourier series (1.9).

Theorem 2.2:

If f is a 2π - Periodic function of class $Lip \alpha$, then degree of approximation by the product $(E,q)(\overline{N},p_n)$ summability means on the conjugate series of its Fourier series (defined above) is given by $\|\tau_n - f\|_{\infty} = O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1$, where τ_n as defined in (1.7).

3. Main theorem:

In this paper, we have proved a theorem on degree of approximation by the product mean (E, r)(N, p, q) of the Fourier series of a function of class $Lip\alpha$. We prove:

Theorem -3.1:

If f is a 2π – Periodic function of the class $Lip(\alpha, r)$, then degree of approximation by the product (E, r)(N, p, q) summability means on its Fourier series (1.9) is given by, $\|\tau_n - f(x)\|_{\infty} == O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1$, where τ_n is as defined in (1.7).

4. Required Lemmas:

We require the following Lemma for the proof the theorem.

Lemma -4.1:

$$\overline{K_n}(t) = O(n) \quad , 0 \le t \le \frac{1}{n+1}$$

Proof of Lemma-4.1:

For
$$0 \le t \le \frac{1}{n+1}$$
, we have $\sin nt \le n \sin t$ then

$$|K_{n}(t)| = \frac{1}{2\pi(1+r)^{n}} \left\{ \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \frac{\cos\frac{t}{2} - \cos\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\}$$

$$\leq \frac{1}{2\pi(1+r)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \frac{\cos\frac{t}{2} - \cos\nu t \cdot \cos\frac{t}{2} + \sin\nu t \cdot \sin\frac{t}{2}}{\sin\frac{t}{2}} \right\}$$

$$\leq \frac{1}{2\pi(1+r)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \left(\frac{\cos\frac{t}{2} \left(2\sin^{2}\nu\frac{t}{2} \right)}{\sin\frac{t}{2}} + \sin\nu t \right) \right) \right\} \right|$$

$$\leq \frac{1}{2\pi(1+r)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} (O(\nu) + O(\nu)) \right\} \right|$$

$$\leq \frac{1}{2\pi(1+r)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \frac{O(k)}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \right|$$

This proves the lemma.

Lemma-4.2:

$$\left|\overline{K_n}(t)\right| = O\left(\frac{1}{t}\right), \text{ for } \frac{1}{n+1} \le t \le \pi.$$

Proof of Lemma-4.2:

For $\frac{1}{n+1} \le t \le \pi$, we have by Jordan's lemma, $\sin\left(\frac{t}{2}\right) \ge \frac{t}{\pi}$, $\sin nt \le 1$.

Then

$$\left|\overline{K_{n}}(t)\right| = \frac{1}{2\pi(1+r)^{n}} \left|\sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \frac{\cos\frac{t}{2} - \cos\left(\nu + \frac{1}{2}\right)t}{\sin\frac{t}{2}} \right\} \right|$$

$$\leq \frac{1}{2\pi (1+r)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \frac{\cos \frac{t}{2} - \cos \nu \frac{t}{2} \cdot \cos \frac{t}{2} + \sin \nu \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}} \right\} \right|$$
$$\leq \frac{1}{2\pi (1+r)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \frac{\cos \frac{t}{2} \left(2\sin^{2} \nu \frac{t}{2}\right) + \sin \nu \frac{t}{2} \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}} \right\} \right|$$

$$\leq \frac{1}{2\pi (1+r)^{n}} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} \frac{\pi p_{k-\nu} q_{\nu}}{2t} \right\} \right|$$
$$= \frac{1}{4 (1+r)^{n} t} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \right\} \right|.$$
$$= \frac{1}{4 (1+q)^{n} t} \left| \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \right|$$
$$= O\left(\frac{1}{t}\right).$$

This proves the lemma.

5. Proof of Theorem 3.1:

Using Riemann –Lebesgue theorem, for the n-th partial sum $s_n(f;x)$ of the Fourier series (1.9) of f(x) and following Titchmarch [4], we have

$$\overline{s_n}(f;x) - f(x) = \frac{1}{2\pi} \int_0^{\pi} \psi(t) \ \overline{K_n} \ dt$$

Using (1.1), the $\left(N,p,q
ight)$ transform of $\overline{s_n}\left(f;x
ight)$ is given by

$$t_n - f(x) = \frac{1}{2\pi r_n} \int_0^{\pi} \psi(t) \sum_{k=0}^n p_{n-k} q_k \frac{\cos \frac{t}{2} - \cos \left(n + \frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} dt.$$

Denoting the (E, r)(N, p, q) transform of $\overline{s_n}(f; x)$ by τ_n , we have

$$\|\tau_{n} - f\| = \frac{1}{2\pi (1+r)^{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} {n \choose k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} \right\} dt$$

$$= \int_{0}^{\pi} \psi(t) \ \overline{K_n}(t) dt$$
$$= \left\{ \int_{0}^{\frac{1}{n+1}} + \int_{\frac{1}{n+1}}^{\pi} \right\} \psi(t) \ \overline{K_n}(t) dt$$

 $= I_1 + I_2$, say

(5.1)

Now

$$\begin{split} |I_{i}| &= \frac{1}{2\pi \left(1+r\right)^{n}} \left| \int_{0}^{y_{n+1}} \psi(t) \sum_{k=0}^{n} \binom{n}{k} r^{n-k} \left\{ \frac{1}{r_{k}} \sum_{\nu=0}^{k} p_{k-\nu} q_{\nu} \frac{\cos \frac{t}{2} - \cos \left(\nu + \frac{1}{2}\right) t}{\sin \left(\frac{t}{2}\right)} \right\} dt \\ &\leq O(n) \int_{0}^{\frac{1}{n+1}} |\psi(t)| \, dt, \qquad \text{using lemma-4.1} \\ &= O(n) \int_{0}^{\frac{1}{n+1}} t^{\alpha} | \, dt \\ &= O(n) \left[\frac{t^{\alpha+1}}{\alpha+1} \right]_{0}^{\frac{1}{n+1}} \\ &= O(n) \left[\frac{1}{(\alpha+1)(n+1)} \right] \\ \text{(5.2)} &= O\left(\frac{1}{(n+1)^{\alpha+1}}\right) \\ \text{Next} \\ \left| I_{2} \right| &\leq \int_{\frac{1}{n+1}}^{\pi} |\psi'(t)| \frac{|\overline{K_{n}}(t)| \, dt}{t}, \qquad \text{using lemma-4.2} \\ &= \int_{\frac{1}{n+1}}^{\pi} |t^{\alpha}| O\left(\frac{1}{t}\right) dt \end{split}$$

1961 | Page

(5.3)

 $=\int_{\frac{1}{n+1}}^{\pi}t^{\alpha-1}dt$

 $= O\!\!\left(\frac{1}{\left(n+1\right)^{\alpha}}\right)$

Then from (5.2) and (5.3), we have

$$\left|\tau_{n} - f(x)\right| = O\left(\frac{1}{\left(n+1\right)^{\alpha}}\right), 0 < \alpha < 1$$

$$\|\tau_n - f(x)\|_{\infty} = \sup_{-\pi < x < \pi} |\tau_n - f(x)| = O\left(\frac{1}{(n+1)^{\alpha}}\right), 0 < \alpha < 1$$

This completes the proof of the theorem.

References

- [1] G.H. Hardy: Divergent series, First edition, Oxford University press 70(19).
- [2] Misra, U.K. Misra, M. Misra, B.P. Padhy and S.K. Buxi: On degree of approximation by product mean $(E,q)(\overline{N}, p_n)$ of the conjugate series of the Fourier series", International Journal of Math. and Sciences and Engineering Applications, ISSN 0973 9424, Vol.6, No.122 (2012), pp 363-370.
- [3] H.K. Nigam and Ajay Sharma: On degree of Approximation by product means, Ultra Scientist of Physical Sciences, Vol.22 (3) M, 889-894, (2010).
- [4] **E.C. Titchmarch**: The theory of functions, oxford university press, p.p402-403(1939).
- [5] A. Zygmund : Trigonometric Series , second Edition , Vol.I , Cambridge University press , Cambridge , (1959).

