

COMMON FIXED POINT FOR TANGENTIAL MAPS OF GREGUS TYPE ON FUZZY METRIC SPACES

Anil Rajput¹ and Ritu Tiwari²

¹Department of Mathematics, CSA Govt. PG College, Sehore MP India (dranilrajput@hotmail.com)

² Department of Basic Science, JNCT Bhopal, India (deepuritutiwari@gmail.com)

Abstract: In this paper, we define extend the results of many others. We prove common fixed point theorems on tangential property for a Gregus type on pair of fuzzy metric spaces. We also deal on some coupled coincidence and common fixed point theorems.

Council for Innovative Research

Peer Review Research Publishing System

Journal: JOURNAL OF ADVANCES IN MATHEMATICS

Vol. 9, No. 5

www.cirjam.com, editorjam@gmail.com

1 INTRODUCTION:

The notion of fuzzy sets introduced by Zadeh (1965, [4]) proved a turning point in the development of Mathematics. The study of fixed points for multi-valued contraction mappings using the Hausdorff metric was initiated by Markin (1973, [2]) and Nadler (1972, [3]).

Bhaskar and Lakshmikantham (2006, [1]) introduced the concepts of coupled fixed points and mixed monotone property and illustrated these results by proving the existence and uniqueness of the solution for a periodic boundary value problem.

2 Definitions and Preliminaries:

To set up our results in the next section we recall some definitions and facts.

- **2.1 Definition:** A fuzzy set A in X is a function with domain X and values in [0, 1].
- **2.2 Definition:** A binary operation *: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous t-norm if ([0, 1], *) is a topological abelian monoid with unit 1 s.t. a * b \leq c * d whenever a \leq c and b \leq d, \forall a, b, c, d \in [0, 1].

Some examples are below:

- (i) *(a, b) = ab,
- (ii) $*(a, b) = min\{a, b\}.$
- **2.3 Definition:** The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times [0, \infty)$ satisfying the following conditions:

```
(FM-1) M(x, y, t) > 0 and M(x, y, 0) = 0
```

- (FM-2) M(x, y, t) = 1 iff x = y,
- (FM-3) M(x, y, t) = M(y, x, t),
- (FM-4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s),$
- (FM-5) $M(x, y, .): (0, \infty) \rightarrow [0, 1)$ is continuous, for all $x, y, z \in X$ and s, t > 0.

therefore, M(x, y, .) is non-decreasing for all $x, y \in X$

- 2.4 Definition: Let (X, M,) be a fuzzy metric space.
 - (i) A sequence $\{x_n\}$ is said to be convergent to a point $x \in X$ if $\lim_{n \to \infty} M(x_n, x, t) = 1$ for all t > 0.
 - (ii) A subset $A \subseteq X$ is said to be closed if each convergent sequence $\{x_n\}$ with $x_n \in X$ (A) and $x_n \to x$, we have $x \in A$.
 - (iii) A subset $A \subseteq X$ is said to be compact if each sequence in A has a convergent subsequence.

Throughout the paper X will represent the fuzzy metric space of X. For A, B $\in \kappa(X)$ and for every t > 0, denote

(X, M, *) and $\kappa(X)$, the set of compact subsets

$$M_{\mathbb{Z}}$$
 A, B,t) \mathbb{Z} \mathbb{Z} $mid_{min_{a\mathbb{Z}}}$ $A(a, B, t)$, $min_{b\mathbb{Z}}$ A, b, t}, $M_{\mathbb{Z}}$ $A(a, y, t) = max\{M(x, y, t)\}; x, y \mathbb{Z}$ $A(a, y, t)$

Remark: Obviously, $M_{\mathbb{Z}}A$, B, t) $\leq M_{\mathbb{Z}}a$, B, t) whenever a \mathbb{Z} \mathbb{Z} A and $M_{\mathbb{Z}}a$, B, b = 1 \mathbb{Z} \mathbb{Z} A= B. Also $M_{\mathbb{Z}}a$, B, b = 1 if b \mathbb{Z} A.

3 Main Results

- **3.1 Theorems:** Let A, B: $X \to X$ and S, T: $X \times X \to \kappa(X)$ be single and set-valued mappings satisfying the following conditions:
 - (1) there exist contained coupled weak tangential points (z_1, z_2) to the mappings A and B.
 - (2) (A, B) is tangential w. r.t (S, T)
 - (3) $\int_0^{M_{\nabla}(S(x, y), T(u, v), t)} \psi(s) ds \ge \int_0^{m(x, y, u, v, t)} \psi(s) ds$

where

m(x, y, u, v, t)

$$=\emptyset \begin{bmatrix} a \begin{pmatrix} M^{\Delta}(S(x,y),Ax,t) * M^{\Delta}(T(u,v),Bu,t) \\ +M^{\Delta}\left(S(x,y),Bu,\frac{t}{2}\right) * M^{\Delta}\left(T(u,v),Ax,\frac{t}{2}\right) \end{pmatrix} \\ +(1-2a)\max \begin{bmatrix} M^{\Delta}(S(x,y),Ax,t),M^{\Delta}(T(u,v),Bu,t), \\ M_{\nabla}(S(x,y),Ax,t),M_{\nabla}(T(u,v),Bu,t) \end{bmatrix} \end{bmatrix}$$

(4) AAa = Aa, BBC = Bc, S(Aa, Ab) = T(Bc, Bd) and

AAb = Ab, BBd = Bd, S(Ab, Aa) = T(Bd, Bc) for
$$(a, b) \in C(A, S)$$
 and $(c, d) \in C(B,T)$,

(5) the pair (A, S) is weakly compatible, for all x, y, u, v ∈ X, 0 ≤ a < 1 and Ø: 0, 1] → [0,1] be a non-decreasing map such that Ø(t) > t, t ≥ 0. Then A, B, S and T have a common coupled fixed point in X.

Proof: Since $z_1, z_2 \in A(x) \cap B(X)$ so there exist points $w_1, w_2, w_1/, w_2/ \in X$ such that $z_1 = Aw_1 = Bw_1/, z_2 = Aw_2 = Bw_2/$. Again (A, B) is tangential w.r.t (S, T) so there exist sequences $\{x_n\}$ and $\{y_n\}$ in X such that

$$\lim_{n\to\infty}\,Ay_n=z_2=\lim_{n\to\infty}\,Bx_n\,\epsilon\;D\;\epsilon\;\mathbb{Z}\;\,\mathbb{Z}\;\,X\mathbb{Z}\;\,\mathbb{Z}\;\,\text{Into}\;S\;(y_i,x_n)\,\cap\,\lim_{n\to\infty}\,T(x_n,y_n)$$

Now, we shall prove that

$$Aw_1 \in S(w_1, w_2), Aw_2 \in S(w_2, w_1), Bw_1' \in T(w_1', w_2')$$

and

$$Bw_2' \in T(w_2', w_1')$$
 If not, putting $x = x_n$, $y = y_n$, $u = w_1'$ and $v = w_2'$ in (3), we get

 $m(x_n, y_n, w_1^{/}, w_2^{/}, t)$

$$= \emptyset \begin{bmatrix} a \begin{pmatrix} M^{\Delta}(S(x_n, y_n), Ax_n, t) * M^{\Delta}(T(w_1', w_2'), Bw_1', t) \\ +M^{\Delta}\left(S(x_n, y_n), Bw_1', \frac{t}{2}\right) * M^{\Delta}\left(T(w_1', w_2'), Ax_n, \frac{t}{2}\right) \end{pmatrix} \\ + (1 - 2a) \max \begin{cases} M^{\Delta}(S(x_n, y_n), Ax_n, t), M^{\Delta}(T(w_1', w_2'), Bw_1', t), \\ M_{\nabla}(S(x_n, y_n), Ax_n, t), M_{\nabla}(T(w_1', w_2'), Bw_1', t) \end{cases}$$

$$\int_{0}^{M_{\nabla}(S(x_{n},y_{n}),\ T(w'_{1},w'_{2}),\ t)} \psi(s)ds \geq \int_{0}^{m(x_{n},y_{n},w'_{1},w'_{2}\ t)} \psi(s)ds$$

Letting $n \to \infty$, we have

$$\int_{0}^{\lim_{n\to\infty} M_{\nabla}(S(x_{n},y_{n}), \ T(w'_{1},w'_{2}), \ t)} \psi(s)ds \geq \int_{0}^{\lim_{n\to\infty} m(x_{n},y_{n},w'_{1},w'_{2} \ t)} \psi(s)ds,$$

but

 $\lim_{n \to \infty} m(x_n, y_n, w_1^{/}, w_2^{/}, t)$

$$= \emptyset \begin{bmatrix} a \left(1 * M^{\Delta}(T(w_1', w_2'), Bw_1', t) \\ + M^{\Delta}(z_1, Bw_1', \frac{t}{2}) * M^{\Delta}(T(w_1', w_2'), z_1, \frac{t}{2}) \right) \\ + (1 - 2a) \max \begin{cases} 1, M^{\Delta}(T(w_1', w_2'), Bw_1', t), \\ 1, M_{\nabla}(T(w_1', w_2'), Bw_1', t) \end{cases} \end{bmatrix}$$

$$= \emptyset \begin{bmatrix} a \begin{pmatrix} M^{\Delta}(T(w'_1, w'_2), Bw'_1, t) \\ +M^{\Delta}(T(w'_1, w'_2), Bw'_1, t) \end{pmatrix} \\ + (1 - 2a) \max\{M^{\Delta}(T(w'_1, w'_2), Bw'_1, t)\} \end{bmatrix}$$

$$= \emptyset [2a + (1 - 2a)] M^{\Delta}(T(w_1, w_2), Bw_1, t)$$

$$\int_{0}^{M_{\nabla}(C,T(w_{1}^{\prime}, w_{2}^{\prime}),t)} \psi(s)ds \geq \int_{0}^{\emptyset(M^{\Delta}(T(w_{1}^{\prime}, w_{2}^{\prime}), Bw_{1}^{\prime}, t))} \psi(s)ds$$

Since, $z_1 = Bw_1^{\ \ \ } \epsilon C$, we have

$$\mathbb{P} \, \mathbb{P} \, \mathbb{P} \, \mathbb{P}_{0}^{M^{\Delta}(Bw_{1}/, T(w_{1}/, w_{2}/), t))} \, \psi(s) ds \geq \int_{0}^{M_{\nabla}(C, T(w_{1}/, w_{2}/), kt)} \, \psi(s) ds \\ \geq \int_{0}^{\phi(M^{\Delta}(T(w_{1}/, w_{2}/), Bw_{1}/, t))} \, \psi(s) ds \\ \Rightarrow \mathbb{P}_{0}^{M^{\Delta}(Bw_{1}/, T(w_{1}/, w_{2}/), t))} \, \psi(s) ds \\ \geq \int_{0}^{\phi(M^{\Delta}(Bw_{1}/, T(w_{1}/, w_{2}/), t))} \, \psi(s) ds \\ \geq \int_{0}^{\phi(M^{\Delta}(Bw_{1}/, T(w_{1}/, w_{2}/), t))} \, \psi(s) ds$$

which is a contradiction. Hence $Bw_1^{\prime} \in T(w_1^{\prime}, w_2^{\prime})$

Similarly, by putting $x = y_n$, $y = x_n$, $u = w_2'$ and $v = w_1'$ in (3), we get $Bw_2' \in T(w_2', w_1')$.

Again by taking $x = w_1$, $y = w_2$, and $u = y_n$ and $v = x_n$ in (3), we get

 $m(w_1, w_2, y_n, x_n, t)$

$$= \emptyset \begin{bmatrix} a \begin{pmatrix} M^{\Delta}(S(w_1, w_2), Aw_1, t) * M^{\Delta}(T(y_n, x_n), By_n, t) \\ + M^{\Delta}\left(S(w_1, w_2), By_n, \frac{t}{2}\right) * M^{\Delta}\left(T(y_n, x_n), Aw_1, \frac{t}{2}\right) \end{pmatrix} \\ + (1 - 2a) \max \begin{cases} M^{\Delta}(S(w_1, w_2), Aw_1, t), M^{\Delta}(T(y_n, x_n), By_n, t), \\ M_{\nabla}(S(w_1, w_2), Aw_1, t), M_{\nabla}(T(y_n, x_n), By_n, t) \end{cases}$$

$$\int_{0}^{M_{\nabla}(S(w_{1},w_{2}),\ T(y_{n},x_{n}),t)} \psi(s)ds \geq \int_{0}^{m(w_{1},w_{2},y_{n},x_{n},t)} \psi(s)ds, \text{ hence}$$

$$\int_{0}^{\lim_{n\to\infty} (M_{\nabla}(S(w_{1},w_{2}),C,t))} \psi(s)ds \geq \int_{0}^{\lim_{n\to\infty} m(w_{1},w_{2},y_{n},x_{n},t))} \psi(s)ds$$

$$= \int_{0}^{\emptyset(M^{\Delta}S(w_{1},w_{2}),Aw_{1},t))} \psi(s)ds$$

As $z_1 = Aw_1 \ \mathbb{Z}$ \mathbb{C} , we have

$$\int_{0}^{(M^{\Delta}S(w_{1},w_{2}),Aw_{1},t))} \psi(s)ds \ge \int_{0}^{M_{\nabla}(S(w_{1},w_{2}),C,t)} \psi(s)ds
\ge \int_{0}^{\phi(M^{\Delta}S(w_{1},w_{2}),Aw_{1},t))} \psi(s)ds
\ge \int_{0}^{M^{\Delta}S(w_{1},w_{2}),Aw_{1},t} \psi(s)ds$$

Which is a contradiction. Hence $Aw_1 \ @ \ @S(w_1, w_2)$

Similarly, by putting $x = 2w_2$, $y = w_1$, $u = x_n$ and $v = y_n$ in (3),

we get $z_2 = Aw_2 \ 2 \ 2 (w_2, w_1)$.

Hence $(w_1, w_2) \ \mathbb{Z} \ \mathbb{C}(A, S)$ and $(w_1, w_2) \ \mathbb{Z} \ \mathbb{C}(B, T)$. Now (4), gives

 $AAw_1 = Aw_1$, $BBw_1' = Bw_1'$ and $S(Aw_1, Aw_2) = T(Bw_1', Bw_2')$

 $AAw_2 = Aw_2$, $BBw_2' = Bw_2'$ and $S(Aw_2', Aw_1') = T(Bw_2', Bw_1')$.

But we have $z_1 = Aw_1 = Bw_1^{\prime}$, $z_2 = Aw_2 = Bw_2^{\prime}$. This gives,

 $Az_1 = z_1 = Bz_1$ and $S(z_1, z_2) = T(z_1, z_2)$

 $Az_2 = z_2 = Bz_2$ and $S(z_2, z_1) = T(z_2, z_1)$

Also, weak compatibility of (A, S) gives AS(w₁, w₂) 2 S(Aw₁, Aw₂)

 $2 \mathbb{Z}_1 = Bz_1 = Az_1 \mathbb{Z} AS(w_1, w_2) \mathbb{Z} S(Aw_1, Aw_2) = S(z_1, z_2) = T(z_1, z_2).$

Similarly, we can have $z_2 = Bz_2 = Az_2$ $\mathbb{Z}(z_2, z_1) = T(z_2, z_1)$. Hence mappings A, B, S and T.

 $(z_1,\ z_2)$ is a common coupled fixed point of the

Example:Let X = R and a * b = ab and M (x, y, t) = $\frac{t}{t+d(x,y)}$ then \rightarrow X and S, T: X × X $\rightarrow \kappa$ (X) by setting

(X, M,) is a fuzzy metric space. Define A, B: X

$$Ax = \begin{cases} 2x - 1, x \le 1 \\ 3, x > 1 \end{cases}, \quad Bx = \begin{cases} 2 - x, 1 \le x \le 2 \\ 3, otherwise \end{cases} \quad \text{and} \quad \\ S(x, y) = \begin{cases} [x + y - 4, x + y + 2], if \ x, y \ 2 \ 2 \ 3, otherwise \end{cases}$$

$$[x - 1, y - 1], \quad \text{otherwise} \quad \\ T(x, y) = \begin{cases} [2x - y + 1, 3x + y], x < y \\ [x - 2y - 1, \ x + 3], x \ge y \end{cases}$$

Consider the sequences, $\{x_n\} = 1 - \frac{1}{n}$ and $\{y_n\} = 1 + \frac{1}{n}$, then

$$\lim_{n\to\infty}\,Ax_n=\lim_{n\to\infty}\,By_n\to 1\;\epsilon\;\lim_{n\to\infty}S(x_n,\,y_n)\;\cap\;\lim_{n\to\infty}T(y_n,\,x_n)$$

$$\lim_{n\to\infty}Ay_n=\lim_{n\to\infty}Bx_n\to 3\;\epsilon\;\lim_{n\to\infty}S(y_n,\;x_n)\;\cap\;\lim_{n\to\infty}T(x_n,\;y_n)$$

This shows that (A, B) is tangential w.r.t (S, T)

$$A_1 = B_1 = 1 \in [0, 6] = S(1, 3) \cap T(3, 1)$$

Also.

$$A_3 = B_3 = 3 \in [0, 6] = S(3, 1) \cap T(1, 3)$$

Hence all the conditions of above theorems are satisfied and (1, 3) is a coupled fixed point of the maps A, B, S and T.

- **3.2 Theorem:** Let A, B: $X \to X$ and S, T: X @ @ X @ @ @ X) be single and set-valued mappings satisfying the following conditions:
 - (1) there exist contained coupled weak tangential points (z_1, z_2) to the mappings A and B.
 - (2) (A, B) is tangential with respect to (S, T).

(3)
$$\int_0^{M_{\nabla}(S(x, y), T(u, v), t)} \psi(s) ds \ge \int_0^{m(x, y, u, v, t)} \psi(s) ds$$
 where $m(x, y, u, v, t)$

$$= \emptyset \begin{bmatrix} a\left(M^{\Delta}(S(x,y),Ax,t), & M^{\Delta}(T(u,v),Bu,t)\right) \\ +a\left(M^{\Delta}\left(S(x,y),Bu,\frac{t}{2}\right), & M^{\Delta}\left(T(u,v),Ax,\frac{t}{2}\right)\right) \\ +(1-2a)\max \left\{ \begin{matrix} M^{\Delta}(S(x,y),Ax,t) * M^{\Delta}(T(u,v),Bu,t), \\ M_{\nabla}(S(x,y),Ax,t), M_{\nabla}(T(u,v),Bu,t) \end{matrix} \right\} \end{bmatrix}$$

- a. AAa = Aa = BBc, S(Aa, Ab) = T(Bc, Bd) and AAb = Ab = BBd, S(Ab, Aa) = T(Bd, Bc) for $(a, b) \in C(A, S)$ and $(c, d) \in C(B, T)$
- b. the pair (A,S) is weakly compatible,

Proof The result follows directly from theorem (3.1).

References:

- [1]. Bhaskar T. G. and Lakshmikantham V.: Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis: Theory, Methods and Applications, Vol.65, no.7, pp. 1379-1393, 2006.
- [2]. Markin J.T.: Continuous dependence of fixed point sets, Proc. Am. Math. Soc. 38(1973)-0313897-4.
- [3]. Nadler S.: Multi-valued contraction mappings, Pacific J. Math. 30 (1972), MR 40#8035.Zbl 187.45002.
- [4]. Zadeh L.A.: Fuzzy Sets, Information and Control, Vol. 89, pp. 338-353, 1965.