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Abstract: In this paper, we define extend the results of many others. We prove common fixed point theorems on
tangential property for a Gregus type on pair of fuzzy metric spaces. We also deal on some coupled coincidence and
common fixed point theorems.
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1 INTRODUCTION:

The notion of fuzzy sets introduced by Zadeh (1965, [4]) proved a turning point in the development of Mathematics. The
study of fixed points for multi-valued contraction mappings using the Hausdorff metric was initiated by Markin (1973, [2])
and Nadler (1972, [3]).

Bhaskar and Lakshmikantham (2006, [1]) introduced the concepts of coupled fixed points and mixed monotone property
and illustrated these results by proving the existence and uniqueness of the solution for a periodic boundary value
problem.

2 Definitions and Preliminaries:

To set up our results in the next section we recall some definitions and facts.
2.1 Definition: A fuzzy set A in X is a function with domain X and values in [0, 1].

2.2 Definition: A binary operation *: [0, 1] x [0, 1] - [0, 1] is a continuous t-norm if ([0, 1], *) is a topological abelian
monoid with unit1 s.t. a*b <c*dwhenevera < candb<d,va,b,c,de]0, 1].
Some examples are below:

(i) *(a, b) = ab,

(i) *(a, b) = min{a, b}.

2.3 Definition: The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, * is a continuous t-norm and
M is a fuzzy seton X2 x [0, o) satisfying the following conditions:

(FM-1) M(x, y, t) >0 and M(x,y,0) =0

(FM-2) M(x,y,t)=1iffx=1y,

(FM-3) M(x, ¥, t) = M(y, X, 1),

(FM-4) M(x, y, t) * M(y, z, S) < M(x, z, t + ),

(FM-5) M(X, Y, .) : (0, ) = [0, 1) is continuous, for all x, y, zeXands, t>0.

therefore, M(x, y, .) is non-decreasing for all X, y € X

2.4 Definition: Let (X, M,) be a fuzzy metric space.

(@) A sequence{xn} is said to be convergent to a point x € X if lim M(x,, X, t) = 1 for all t > 0.
n—-oo
(i) A subset A € X is said to be closed if each convergent sequence {xn with x, € X (A) and x, = x, we have
X €A,
(iii) A subset A € X is said to be compact if each sequence in A has a convergent subsequence.
Throughout the paper X will represent the fuzzy metric space (X, M, %) and k(X), the set of compact subsets

of X. For A, B € k(X) and for every t > 0, denote
Mg A, Byt) miminag Aa, B, t), minves A, b, t },
ME(A,y, t) = max{M(x,y,)}; x, ¥ A

Remark: obviously, MaBA, B, t) < ME@a, B, t) whenever a Aand MR A BY=1 A B. AlsoMP@ Ay, 3 =1ify
A.

3 Main Results

3.1 Theorems: Let A, B: X > X and S, T: X x X - k(X) be single and set-valued mappings satisfying the following
conditions:

(1) there exist contained coupled weak tangential points (z1, z2) to the mappings A and B.

(2) (A, B)istangential w. r.t (S, T)
(3) fOMV(S(x, y), T(u, v), t) \V(S)dS > fom(x, y, u, v, t) w(s)ds
where

m(x, y, u, v, t)

2609| Page November 11, 2014



g

ISSN 2347-1921

[ MA(S(x,y), Ax,t) * MA(T (u,v), Bu, t) l

_ g +MA <S(x,y), Bu,%) * MA (T(u, v),Ax,%)

|

MA(S(x,¥), Ax, t), MA(T (u, v), Bu, t),}
My(S(x,y), Ax, t), My(T (u,v), Bu, t)
(4) AAa = Aa, BBC =Bc, S(Aa, Ab) = T(Bc, Bd) and

AAb = Ab, BBd = Bd, S(Ab, Aa) = T(Bd, Bc) for (a,b) e C(A, S) and (c, d) e C(B,T),

(5) the pair (A, S) is weakly compatible, for all x,y, u,v e X, 0 <a<Zland ¢: 0, 1] - [0,1] be a non-decreasing
map such that @(t) > t, t > 0. Then A, B, S and T have a common coupled fixed point in X.

l+ (1-2a) max{

Proof: Sincezi,zzeA (x) N B (X) so there exist points w1, w2, w1/, w2/ € X such that z1 = Aw1 = Bw1/, z2 = Aw2 = Bw2/. Again
(A, B) is tangential w.r.t (S, T) so there exist sequences {xn} and {yn} in X such that

lim Axn=1z1 = lim Byne Ce @ XRRAAlim @ S(x, yn) N lim T(yn, Xn)
n—-oo n—-oo n—-oo

n—-oo

lim Ayn=7z2= lim BxneDe X@ B Brl@ S(y, xn) N lim T(Xn, yn)
n—-oo n—-oo n—-oo

0o
Now, we shall prove that

AWy € S(W1, W2), AW, € S(Wa, Wi), Bwa' € T(wi', wy)
and

Bw, € T(ng, wll) If not, putting X = Xn, Y = Yn, U = wi' and v =w'in (3), we get

m(Xn, Yn, Wl/: Wz/y t)

MA(S(x,, V), Ax,,, 1) * MA(T(Wl/, Wz/),Bwl/, t)

t t
+M2 (S(xn, ), Bwl/,5> « MA (T(w{, w/ ),Axn,z)

MA(S(x,, Vi), Axy, t),MA(T(wl/, wz/),Bwl/, t),]

+ (1 - 2a) max{
_ My (S Gon, Yn), Ay, 00, My (T (w], w)), Bw], t)

T/ /!
fOMV(S(xn'}’n)' T(W1vW2)v t) (//(s)ds > fom(xn'}’n'Wsz t) l//(S)dS

Letting n — o, we have
‘li_l;féoMV(S(xn-yn)v T(W{'wé
0

) lim m (X, Yo W}, wh t)
19 oyas = PR wed
but

r}l_l;l;lo m(Xn, yny Wl/! Wz/v t)
1+ MA(T(w{, wy), Bwi, t)

t t
+MA (Zl,Bwl/, 5) * MA (T(Wl/, Wz/),zl,5>

1, MA(T(w!, w)), Bw/, t),}

+ (1 — 2a) max
| {11 MV(T(Wl/r Wz/))Bwl/f t)

) ( MO(T o, w), B, t)> ]

_ 5 +MA(T(W1/, wz/), Bw/, t)
|+ (1 - 2a) max{ MA(T(w{, w}), Bw], t)}‘
= ¢ [2a + (1 - 2a)] MA(T(w/, wi), Bw!, t)

/ / A / / /
J‘OMV(CrT(Wl , W2 )rt) l//(S)dS > J‘O@(M (T(Wl , W2 )' BW1 y t)) l//(S)dS
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Since, z; = BW1/€ C, we have
ABw/, T(wi/,wo/), t My(C, T(wy/, wy/), kt
0(W1 (wi/,wz/), 1)) l//(S)dSZfO v( w1/, wa/) )y/(s)ds
PoMA(T(wy/, wp/), Bwy/, 1))
> [, w(s)ds

A / / / A / / /
=>f0M (Bw1/, T(wq1/,wp/), t)) l//(S)dS > fO(Z)(M Bw1/,Tw1/, wy/), t) l//(S)dS

A / / /
Z J'O(M (BW1 ’ T(Wl ,» W2 )' t)) l//(S)dS

which is a contradiction. Hence Bwy' e T(wll, wzl),
Similarly, by putting X = Yn, ¥ = Xn, U = w, and v =w,'in (3), we get Bw, € T(Wzl, Wl’).
Again by taking x = w1, y = wp, and u =y, and v = X, in (3), we get

M(W1, W2, Yn, Xn, t)
" MA(S(WLWZ):Aert) * MA(T(yn: xn)x Bynx t) l

t t
+MA (S(WI'WZ); Byn: E) % MA (T(}’n.xn);AWp E)
=0

MA(S(WIJ WZ):AWIJ t)' MA(T(yn'xn)' Byn' t)'}
MV(S(Wli WZ)!AWD t), MV(T(yn! xn)! BJ’n: t)

fOMV(S(erWZ)i T(ynrxn)rt) W(S)ds 2 fm(wl;WZzyn,xn,t) W(S)ds, hence

l+ (1-2a) max{

|

0
lim (My(S(w1,w2),C,t) lim mWwq, wa,yn,xn,t)
[0 N i ory K "y w(s)ds
_ (OMAS(wy,w2),Awy,t))
= fo w(s)ds

As z; = Aw; B BEC, we have

A
fo(M S(w1,w2),Awq,t)) (//(s)ds > fOMv(S(WLWz),C.t l//(S)dS

A
> foﬁ)(M S(w1,w2),Awq,t)) l//(S)dS

> fOMAS(Wl,Wz),Awl,t l//(S)dS
Which is a contradiction. Hence Aw; @ BS(wi, Wy).
Similarly, by putting X =Bw,, y = w1, U = X, and v =y, in (3),
we get 2o = Aw, @ B5(Wp, Wa).
Hence (w1, w2) @ EC(A, S) and (wll, W2/) (B, T). Now (4), gives
AAw; = Awi, BBw:' = Bwy' and S(Aw, Aws) = T(Bwy', Bw,)
AAW; = Aw,, BBw,' = Bw,' and S(Aw,', Aw,’) = T(Bw,/, Bwy').
But we have z; = Aw; = Bwl/, z2=Aw, =B W2/. This gives,
Az; = 21 = Bz and S(z1, z2) = T(z1, 22)
Az, = 2, = Bzz and S(zz, z1) = T(22, 21)
Also, weak compatibility of (A, S) gives AS(wi, w2) B S(Aw1, Aw,)
@1 = Bzy = Az1 @ BAS(w1, W) B S(Awy, Aws) = S(z1, 22) = T(z1, 22).

Similarly, we can have z, = Bz, = Azy B B(z2, z1) = T(z2, z1). Hence  (z1, z2) is a common coupled fixed point of the
mappings A, B, Sand T.

t
t+d (x,y)

Example:Letx=Randa*b=aband M (x,y, t) =
— X and S, T: X x X — k(X) by setting

then (X, M,) is a fuzzy metric space. Define A, B: X
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2x—1,x <1 2—x1< x <2
Ax:{ } Bx:{ } and

3,x>1 3 ,otherwise
[x+y—4x+y+2]ifx,yRd B3]
S(x, y) = .

[x — 1,y — 1], otherwise

Rx—y+1,3x+ylx<y
T y) =

[x—2y—1, x+3],x =y
Consider the sequences, {X,} =1 - % and {y,}=1+ }1 , then

lim AX, = lim By, — 1 € lim S(Xn, Yn) N lim T(yn, Xn)
n—oo n—-oo n-o

n—0o
H&Ay” = r}l_l)‘lc}o Bxhn — 3¢ ,}i_llls(y”’ Xn) N nlmT(xn, Yn)

This shows that (A, B) is tangential w.r.t (S, T)
A1=B;=1¢€[0,6]=5(1,3)nT(3,1)

Also,
As;=B3=3¢€[0,6]=S(3,1)nT(,3)

Hence all the conditions of above theorems are satisfied and (1, 3) is a coupled fixed point of the maps A, B, Sand T.

3.2 Theorem: LetA B:X — Xand S, T: X BEX BABEX) be single and set-valued mappings satisfying the following
conditions:

(1) there exist contained coupled weak tangential points (z1, z2) to the mappings A and B.
(2) (A, B) is tangential with respect to (S, T).

3) fOMv(S(x. y), T(w, v), t) v(s)ds > fom(x, y, u, v, t) w(s)ds where

m(x, y, U, v, t)

a (MA(S(x,y),Ax, ), MA(T(u,v), Bu,t))

v (MA (scemBuz), e (TGuv),Ax, %))

MA(S(x,y), Ax, t) * MA(T (u, v), Bu, t),}
My(S(x,y),Ax, t), My(T (u, v), Bu,t) )

a. AAa = Aa = BBc, S(Aa, Ab) = T(Bc, Bd) and AAb = Ab = BBd, S(Ab, Aa) = T(Bd, Bc) for (a, b) € C(A,
S)and (c,d) e C(B, T)

+(1-2a) max{

b. the pair (A,S) is weakly compatible,

for all x, y, u, veX 0B8Za<1and @z [01] Be@alnon-decreasing map such that @(t) > t, t
& @hen A, B, S and T have a common coupled fixed point in X.

Proof The result follows directly from theorem (3.1).
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