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INTRODUCTION: 

Consider the Cauchy type singular integral equation(CSIE) of the form

 

                    

 
     

1 1

1 1

, ,    -1<x<1,
g t

dt K x t g t dt f x
t x

 

 
                  (1) 

where K(x, t) and f(x) are given real valued functions belonging to the Holder class and g(t) is to be  determined, occurs in 
varieties of mixed boundary value problems of mathematical physics, isotropic elastic bodies involving cracks and other 
related problems [1-3]. The integral is considered as Cauchy principal value integral. Chakrabarti and Berge [4] have 
proposed an approximate method to solve CSIE (1) using polynomial approximation of degree n and collocation points 
chosen to be the zeros of Chebyshev polynomial of the first kind for all cases. They showed that the approximate method 
is exact when the force function f(t) is linear. Kim [5] solved CSIE by using Gaussian quadrature and chose the zeros of 

Chebyshev polynomials of the first and second kinds as the collocation and abscissa points. Abdulkawi [6] discussed the 
numerical solution of CSIE (1)  for tow cases, unbounded and bounded,. He approximated the unknown function by 
weighted Chebyshev polynomials of  the first and second kind, respectively, and used  Lagrange-Chebyshev interpolation 
to approximate the regular kernel. Eshkuvatov et al.[7] discussed approximate solution of CSIE (1) when K(x, t) = 0 for 

four cases. They used weighted Chebyshev polynomials of the first, second, third and fourth kinds. They showed that the 
numerical solution is identical with the exact solution when the force function is a polynomial of degree one. 

 

The characteristic CSIE is of the form 
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dt f x
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                                          (2) 

It is known that the analytical solution of the equation (2) for unbounded case is given by the following expression [7] 

                                       

 
 21

2 2
1

11
,

1

t f t
g t dt

t xx 


 


                        (3) 

where 

                                                             

 
1

1

=0.g t dt


                                                         (4) 

DIFFERENTIAL TRANSFORM METHOD 

The transformation of the kth derivative of  a function in one variable is as follows: 

                          

 
 

0

1

!

k

k

x x

d f x
F k

k dx


 
  

 
                                                     (5) 

and the inverse transformation is defined by 

                                                   0

0

.
k

k

f x F k x x




                                                      (6) 

The following theorems  can be deduced from Eqs. (5) and (6) [8]. 

Theorem 1. If       ,f x g x h x   then 

     .F k G k H k 
 

Theorem 2. If     ,f x ag x  then     ,F k aG k  where a is a constant and G(k) is a differential 

transform of g(x). 

Theorem 3. If   ,nf x x  then     ,F k k n   where 
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1, ,

0, .

k n
k n

k n



  


 

 

 THE  SCHEME OF THE NUMERICAL SOLUTION 

 The numerical solution of Eq. (2) is derived using the following procedures: 

1- The unknown function g(t) is written as: 

                                                       

 
 

21

t
g t

t





                                                         (7) 

where  (x) is regular function, so Eq. (2) becomes 
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t t x
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2- The following singular integrals are evaluated 
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dt x

t t x





  
 

                                    (9) 

                                            

 1

2
1

2) .
1

t
dt

t



 
                                                                            (10) 

3- The following condition is imposed to obtain the unique solution 

                                                 

 1

2
1

0
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t
dt

t








                                                                      (11) 

 

Theorem 4. 

If  

 

 
 

 

1

2
1

     
1

t
g x dt

t t x






 

  

Then the differential transform of  g x is 

                       
1

1 0

1 ,    
N k

k r

G m k C k r m r N


 

        

where ( )k is the differential transform of
 

( )t , and 

 

1

                                     1 0

1 0                                      ( 1) is 

1

     if      ( 1) is e1
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if k r

C k r if k r odd
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Proof : 

By using Maclaurin series  

                                              
0

k

k

t k t




                                                               (12) 

Rewriting g(t) as follows 
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                           (13) 

Using (12) into (13) yields 
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It is known that 
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t x
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                                               (15) 

and [7] 
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                                                     (16) 

Substituting (15) and (16) into (14)  we get 
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Let  
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It is not difficult to see that 
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Due to (19) we get 
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                     (20)            

 Hence 

 

                                               
1
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                                       (21) 

Taking the differential transform onto (21) and using  theorems 1, 2 and 3 yields 

       
1

1 0

1 ,          
N k

K r

G m k C k r m r N


 

        

The proof is completed.                                                                             

 

Theorem  5. 

If 

 
 1

2
1 1

t
g x dt

t








  

Then the differential transform of  g x is 

                               
0

,      
k

G m k C k m N




                                    

where ( ) is the differential transform of (t)k  , and C(k) is defined by (19) 

Proof : 

Using (12) yields :
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                                                      (22) 

Taking the differential transform onto (22) and using theorems 1, 2 and 3 we obtain 

       
0

,           
N

k

G m k C k m N


      

The proof is completed                                                                                

SOLUTION OF THE  SYSTEM 

Taking the differential transform for two sides of Eq.(8) and using Theorem 4 yields 

                     
       

1

1 0

1 ,

0,1,2,....., 1.

N k

K r

k C k r m r F m

m N




 


     


  

 
                                (23) 

which equivalent to the following 

                   

           

 

0 : 1 0 2 1 3 2 4 3 ... 3 4

2 3 1 2 1 (0)

1: 2 (0) (3) (1) (4) (2) (5) (3) ... ( 3) ( 5)

( 2) ( 4) ( 1) ( 3) ( ) ( 2) (1)

2 : (3) (0) (4) (1) (5) (2) (6) (3

m C C C C N C N

N C N N C N N C N F

m C C C C N C N

N C N N C N N C N F

m C C C C

        

        

        

        

     ) ... ( 3) ( 6)

( 2) ( 5) ( 1) ( 4) ( ) ( 3) (2)

3: (4) (0) (5) (1) (6) (2) (7) (3) ... ( 3) ( 7)

( 2) ( 6) ( 1) ( 5) ( ) ( 4) (3)

4 : (5) (0) (6) (1) (7) (2) (8) (3) ..

N C N

N C N N C N N C N F

m C C C C N C N

N C N N C N N C N F

m C C C C
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N C N

N C N N C N N C N F

m N N C N C N C N C

N C F N

m N N C N C N C N C
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m N N C N C
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2 : ( 1) (0) ( ) (1) ( 2)

1: ( ) (0) ( 1)

N C F N
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m N N C F N

























  


       
     

 

Applying Theorem 5 onto the condition (11), we have 
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0

( ) ( ) ( ) ( ) 0
N

k

G m k C k m


    

which gives the following equation 

(0) (0) (1) (1) (2) (2) .. ( 1) ( 1) ( ) ( ) 0, (25)C C C N C N N C N         From 

(24) and (25) we obtain the following system of ( 1) ( 1)n n    for the unknown coefficients

  , 0,1,2,..., ,k k N   

(1) (3) (2) (5) (4) (7) (6) ... ( 3) ( 4)

( 2) ( 3) ( 1) ( 2) ( ) ( 1) (0)

(2) (4) (2) (6) (4) (8) (6) ... ( 3) ( 5)

( 2) ( 4) ( 1) ( 3) ( ) ( 2) (1)

(3) (5) (2) (7

C C C N C N

N C N N C N N C N F

C C C N C N

N C N N C N N C N F

C







       

        

       

        

   ) (4) (9) (6) ... ( 3) ( 6)

( 2) ( 5) ( 1) ( 4) ( ) ( 3) (2)

(4) (6) (2) (8) (4) (10) (6) ... ( 3) ( 7)

( 2) ( 6) ( 1) ( 5) ( ) ( 4) (3)

(5) (7) (2) (9) (4) (11) (6) .

C C N C N

N C N N C N N C N F

C C C N C N

N C N N C N N C N F

C C C





    

        

       

        

     .. ( 3) ( 8)

( 2) ( 7) ( 1) ( 6) ( ) ( 5) (4)

( 4) ( 2) (2) ( ) (4) ( 5)

( 3) ( 1) (2) ( 4)

( 2) ( ) (2) ( 3)

( 1) ( 2)

( ) ( 1)

(0) (2) (2) (4) (4) .... ( 1

N C N

N C N N C N N C N F

N N C N C F N

N N C F N

N N C F N

N F N

N F N

C C N













  

        

      

     

    

   

  

     



) ( 1) ( ) ( ) 0C N N C N


























   

The 

corresponding determinant is 

(1) (2) (3) (4) ... ( 4) ( 3) ( 2) ( 1) ( )

0 (1) (2) (3) ... ( 5) ( 4) ( 3) ( 2) ( 1)

0 0 (1) (2) ... ( 6) ( 5) ( 4) ( 3) ( 2)

0 0 0 (1) ... ( 7) ( 6) ( 5) ( 4) ( 3)

0 0 0 0 ... ( 8) (

C C C C C N C N C N C N C N

C C C C N C N C N C N C N

C C C N C N C N C N C N

C C N C N C N C N C N

C N C N











   

    

    

    

 

  1

7) ( 6) ( 5) ( 4)

...

0 0 0 0 0 ... (1) (2) (3) (4)

0 0 0 0 0 ... 0 (1) (2) (3)

0 0 0 0 0 ... 0 0 (1) (2)

0 0 0 0 0 ... 0 0 0 (1)

0 0 0 0 0 ... 0 0 0 0

n

C N C N C N

C C C C

C C C

C C

C















 
 
 
 
 
 
   
 

 
 
 
 
 
 
 
 
 

         
 

Since the determinant doesn't equal zero then the above system has a unique solution which is 
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( 6) ( 7) (2) ( 4) (4) ( 2) (6) ( )

1
( 7) ( 8) (2) ( 5) (4) ( 3) (6) ( 1)

( 9) (2) ( 6) (4) ( 4) (6) ( 2)1
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( 10) (2) ( 7) (4) ( 5) (6)1
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N F N C N C N C N

N F N C N C N C N

F N C N C N C N
N
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F N C N C N C
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(26 )

( 3)

(8) ( 1)

( 11) (2) ( 8) (4) ( 6) (6) ( 4)1
( 10)

(8) ( 2) (10) ( )

b

N

C N

F N C N C N C N
N

C N C N










  
 

    
          
    

      



 

Thus we obtain the general form of the numerical solution of equation (2) as follows 

0

( ) ( ) k

k

x k x




   

 

NUMERICAL RESULTS 

The errors of the approximate solutions in the following examples are computed as the absolute value of the difference 
between the exact and approximate solutions. 

Example 1. consider the following integral equation 

                

1

4 3 2

1

( ) 11
5 2 , 1 1

8

t
dt x x x x x

t x





       
               (27) 

Using the general formula of the exact solution given by (3) we obtain the exact solutions of Eq.(27) which is 

                    
5 4 3 2

2

1 3 3 5 9
( ) 5

2 2 2 81
x x x x x x

x




 
      

 
                       (28) 

It is clear that the differential transform of  
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5 2

8
f x x x x x      

is 

                                               

11
(0)

8

(1) 1

(2) 2

(3) 5

(4) 1

( ) 0, 5,6,...

F

F

F

F

F

F k k

 
 


 

 



 
  

                              (29) 

From (26a) and (26b)  for N =5 we obtain 
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(5) (4)

1
(4) (3)

1
(3) (2) (2) 5

1
(2) (1) (2) (4)

1
(1) (0) (2) (3) (4) (5)

1
(0) (2) (2) (4) (4)

F

F

F C

F C

F C C

C C














  


 


      

   


     



      


             (30) 

 

Using (19) and (29) into (30) we have 

     

     

9 5 3
0 , 1 , 2 ,

8 2 2

3 5 1
3 , 4 , 5

2

  

  


         


     


 

Thus the numerical solution of Eq.(27) is 

5

5

0

2 3 4 5

( ) ( )

1 9 5 3 3
5

8 2 2 2

k

k

x k x

x x x x x

 







 
       

 


 

which is identical to the exact solution. 
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Table 1. Comparison of errors between method in [7] and proposed method for  Eq.(27). 

 

x 

Errors 

Method in [7] (N=20) Proposed method (N=5) 

-0.95 8.881784197001252E-016 0.00000000000000E-000 

-0.90 -6.661338147750939E-016 0.00000000000000E-000 

-0.70 7.494005416219807E-016 0.00000000000000E-000 

-0.50 -5.551115123125783E-016 0.00000000000000E-000 

-0.30 4.163336342344337E-016 0.00000000000000E-000 

-0.10 -3.330669073875470E-016 0.00000000000000E-000 

0.00 1.665334536937735E-016 0.00000000000000E-000 

0.10 5.551115123125783E-016 0.00000000000000E-000 

0.30 0.000000000000000E-000 0.00000000000000E-000 

0.50 -7.771561172376096E-016 0.00000000000000E-000 

0.70 0.000000000000000E-000 0.00000000000000E-000 

0.90 9.436895709313831E-016 0.000000000000000E-00 

0.95 8.881784197001252E-016 0.00000000000000E-000 

 

Example 2. consider the following singular integral equation 

                                      

 

1

2

2
1

( )
4 1

1

t
dt x

t t x





 
 

                                           (31)            

It is clear that the differential Transform of  

  24 1f x x   

is 

                                 
(0) 1, (1) 0

(2) 4, ( ) 0, 3,4,...

F F

F F k k

   


   
                                (32) 

From (26a) and (26b)  for N =3 we obtain 

                                

 

 

1
(3) (2)

1
(2) (1)

1
(1) (0) (2) 3

1
(0) (2) (2)

F

F

F C

C










  


 


     

   


                                             (33) 

Using (19) and (32) into (33) we have 



  ISSN 2347-1921                                                           

 

2879 | P a g e                                                    D e c e m b e r  3 1 ,  2 0 1 4  
                                               

                                      

   

   

3
0 0, 1 ,

4
2 0, 3 .






     


   


                                             (34) 

Thus the numerical solution of Eq.(31) is 

3

3

0

3

3

( ) ( )

3 4

1
3 4

k

k

x k x

x x

x x

 

 







 
   
 

    



 

which is identical to the exact solution. 

Table 2. Comparison of numerical solutions of method in [9] and 

proposed method for Eq. (31). 

x Exact Numerical solution 

Method in [9] 

(N=65) 

Proposed 
method 

(N=3) 

0 0 -1.22E-14 0 

0.25 -0.68750 -0.68798 -0.68750 

0.50 -1.00000 -1.00096 -1.00000 

0.75 -0.56250 -0.56395 -0.56250 

 

Example 3. Consider the following singular integral equation 

                                           
 

 

1

10

2
1 1

t
x

t t x






 

                                                  (35)               

It is clear that the differential Transform of  

  10f x x  

is 

                                            
(10) 1

( ) 0, 10.

F

F k k

 


  
                                                (36) 

From (26a) and (26b)  for N =11 and using (36) we obtain 

       

   
1 1

11 10F
 

    

       

   
1

10 9 0F


    

          

 
1 1

(9) (8) (2) (11)
2

F C
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1

(8) (7) (2) (10) 0F C


      

         

 
1

(7) (6) (2) (9) (4) (11)

1 3 1

4 8 8

F C C


  

     


  

 

         

 
1

(6) (5) (2) (8) (4) (10) 0F C C


        

         

 
1

(5) (4) (2) (7) (4) (9) (6) (11)

1 3 5 1

8 8 16 16

F C C C


   

       

     

 

         

 
1

(4) (3) (2) (6) (4) (8) (6) (10) 0F C C C


          

         

 
1

(3) (2) (2) (5) (4) (7) (6) (9) (8) (11)

1 9 5 9 35 5

16 32 16 64 128 128

F C C C C


     

         


     

 

         

 
1

(2) (1) (2) (4) (4) (6) (6) (8) (8) (10) 0F C C C C


            

        

 
1

(1) (0) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 3 15 27 15 35 63 7

32 16 64 128 64 128 256 256

F C C C C C


       

           


        

 

       

 
1 3 5 35 63

0 (2) (4) (6) (8) (10) 0
2 8 16 128 256

    



 
             

 
 

Thus the numerical solution of Eq.(35) is 

   
11

3 5 7 9 11

11

0

1 7 5 1 1 1

256 128 16 8 2

k

k

x k x x x x x x x


 
         

 
  

which is identical to the exact solution. 

 

CONCLUSION 

We have developed an efficient approximate method for solving the characteristic singular integral equation with Cauchy 
kernel  for the unbounded case. The developed approximate method gives a very accurate numerical results with only 
small number of knot points N. These show that our approximate method gives a very accurate numerical solution to the  
characteristic Cauchy type singular integral equation. Moreover, our approximate method gives the exact solution when 
the force function f (x) is a polynomial of higher degree. 
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