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ABSTRACT 

Based on new integral estimate, we establish boundedness of the gradient of a solution for a fourth order equation in an 
arbitrary three-dimensional domain 
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1 Introduction 

Higher-order elliptic boundary problems have abundant applications in physics and engineering [10] and have also been 
studied in many areas of mathematics, including conformal geometry (Paneitz operator, Q-curvature [2, 3]) and non-linear 
elasticity [4]. 

Unfortunately, we know little about fundamental properties of the solutions to general higher order PDEs, such as 
boundedness, continuity and regularity near a boundary point. Their investigation brought challenging hypotheses and 
surprising counterexamples. For instance, Hadamard’s 1908 conjecture regarding positivity of the biharmonic Green 
function [6] was actually refuted in 1949 (see [5]). In the case of higher order equations, the maximum principle has been 
established only in relatively nice domains. In 1960 the maximum principle has been established only in relatively nice 
domains. In 1960 the maximum principle has been extended to higher order elliptic equations on smooth domains, and 
later, in the beginning of 90's, to three-dimensional domains diffeomorphic to a polyhedron [8] or having a Lipschitz 
boundary [11]. In particular, it ensures that in such domains a biharmonic function satisfies the weak maximum principle 

                                                 (1.1) 

Since without direct analogues of (1.1) for higher order equations in general domains, the properties of the solutions 
become more involved. To be more specially, let  be a bounded domain and consider the boundary value 

problem 

            (1.2) 

where  is a completion of  in the norm of the Sobolev space , and  is a reasonably nice 

function (e.g. ). Motivated by (1.1), we naturally ask if the gradient of a solution to (1.2) is bounded in an arbitrary 

domain . It turns out that this property may fail when  (see the counterexamples in [9]). In dimension three 

the boundedness of the gradient of a solution was an open problem. 

Recently, S. Mayboroda and V. Maz’ya [12] solved the open problem. They state the boundedness of the gradient of the 
solution to (1.2) under no restrictions on the underlying domain. It is a sharp property in the sense that the function  

satisfying (1.2) generally does not exhibit more regularity. In paper [13], they expand the biharmonic operator  to the 

general polyharmonic operator , i.e., the following equaiton 

        (1.3) 

where  is a reasonably nice function. They establish boundedness of derivatives  for the 

solutions to (1.3) without any restrictions on the geometry of the underlying domain but in . It is shown 

that this result is sharp and cannot be improved in general domains. 

In this paper, our main result is 

Theorem 1.1  Let  be an arbitrary bounded domain in , and 

  

where  are non-negative constants and . Then the solution to the boundary value problem  

satisfies 

                                                          (1.4) 

The present paper establishes pointwise estimates on variational solutions to (P) in an arbitrary three‐ dimensional 

bounded domain. It is shown that the boundedness of the gradient of a solution to (P) is a sharp property and can not be 
improved (see the counterexamples in [12] and [13]). 

The paper is organized as follows. In Section 2, we give some notations and main integral global estimate. In Section 

3, we obtain local  estimate and accomplish the proof of Theorem 1.1. 

2  Notations and Integral global estimate 

First, we give some notations:  : the unit sphere in ;    : the Laplace‐ Beltrami operator on ; : the gradient on 

;     : various positive constants, the exact values of which are not important;   : the ball with radius  

centered at ;    : the ball with radius  centered at the origin;   : the sphere with radius  centered at ;    : 

the sphere with radius  centered at the origin;   ;    ; 

  ;    ;   ;    : the distance from  to ; 

  :  for some . 
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Let  be sphere coordinates in , i.e.  and  is a point of . we usual write the sphere 

coordinates as , where , and , thus  

  

Since it is more convenient that we use , we denote the mappings by  

  

Lemma 2.1  Let  be an open set in  are non-negative constants, 

. Then 

         (2.1) 

for every function  on  such that both side of (2.1) are well-defined. 

Proof. It is well-known that the Laplace operator in three dimension can be written by 

  

Let us start the spherical coordinates  Then 

    

(2.2) 

First, 

            (2.3) 

(see the reference [12]). 

Next, we calculate . Since 
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and 

  

Thus 

 

(2.4) 

Thus (2.1) holds. 

Lemma 2.2  Consider the following two ordinary differential equations 

 
     

  (2.5) 

and 

 
             

 (2.6) 

where  is the Dirac delta function. The solutions to (2.5) and (2.6) which are bounded and vanish at  are given by 

                          (2.7) 

and 

                          (2.8) 

respectively. 

The proof is basic. We omit here.  

Lemma 2.3  Let  be a bounded domain in  be non-negative constants,   and 

 . Then for every , we have 

  

where 

 

    

       (2.9) 

Proof.  Let 
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                                (2.10) 

where  are defined in (2.7) and (2.8), respectively. Thus, we have 

 

              

 (2.11) 

Let us start with the expansion of  by means of spherical harmonic and the eigenvalues of the Laplace-Beltrami operator 

on the unit sphere in three dimension are  and we have the inequality 

 

                         

 (2.12) 

Now, we replace  (in Lemma 2.1) by . From (2.1), (2.5), (2.6), (2.10) and (2.12), we have 

                                                                  

(2.13) 

In order to prove Lemma 2.3, our goal is to show that the follow inequalities 

 

First, we compute  and get 

 

                       

 (2.14) 

and 

                           

2.15) 

(2.14) and (2.15) give 

 

                  

   (2.16) 

and 

         (2.17) 

Obviously, the functions (2.16) and (2.17) are non-positive. 

Next, we know the fact 
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  (2.18) 

Finally, we compute 
1( )g t   and obtain 

 

         

 (2.19) 

and 

 

      

 (2.20) 

which give 

 

            

 (2.21) 

The function (2.21) is non-positive. 

3  Local  estimate 

To start, we need to establish the following energy estimates for the solutions of the elliptic equations. 

Lemma 3.1  Let  be an arbitrary domain in  for some 

 and . Suppose that  satisfies  in  for the real constants  

and . Then 

              

      (3.1) 

where  and  is a positive constant only depending on . 

Proof.  Let  such that 

 in ,  in  and . 

Since  and , we have . We will show that for 

any , 

       (3.2) 

This, together with the Poincaré inequality 

 

                           

  (3.3) 

yields the estimate (3.1). 

To prove (3.2), we use integration by parts and  in  to obtain 

             (3.4) 

A direct computation shows that 
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                        (3.5) 

By the Hölder inequality, the first term in the right side of (3.5) reduces 

 

                         

       (3.6) 

Since 

 

                           

 (3.7) 

which gives estimate of the third term in the right side of (3.5) 

 

                       

 (3.8) 

Meanwhile, 

 

                          

 (3.9) 

by (3.8) and (3.9), the second term in the right side of (3.5) has 

 

                   

 (3.10) 

For the term , we note that 

 

           

 (3.11) 

By (3.7), (3.9) and (3.11), the last term in the right side of (3.5) is 

 

                  

(3.12) 

Thus, (3.6), (3.8), (3.10) and (3.12) imply that (3.2) holds. 

 

The following Lemma reflects the rate of growth of solutions near a boundary point based on Lemma 2.3. 

Lemma 3.2  Let  be a bounded domain in ,  and . Suppose 

             (3.13) 

where  are non-negative constants and . Then 
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where C is a positive constant depending on . 

Proof.  Without loss of generality, we consider . Let us approximate  by a sequence of domains  

with smooth boundaries satisfying 

  

Choose  such that supp  for every  and denote by  the solution of the Dirichlet problem 

  

The sequence  converges to  in  (see [14]). 

Next, let smooth function  such that 

 in ,  in  and . 

Also, fix  and let  be the function in (2.13). 

In particular, 

 

                      

(3.14) 

Now, Consider the difference 

 (3.15) 

We view (3.15) as 

 

                         

(3.16) 

The integral in (3.15) and (3.16) are understood in the sense of pairing between  and its dual space. Obviously, 

the support of (3.16) is a subset of . 

By (3.14), Lemma 3.1 and the Cauchy inequality, we obtain 

         (3.17) 

On the other hand, since  in  and  is supported in , hence the integral in (3.15) 

(the second term in (3.15) is equal to 0) is equal to 

           (3.18) 

To estimate (3.18), we employ Lemma 2.3 with . Then (3.18) is bounded from below by 
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   (3.19) 

Hence for every , by (3.17)‐ (3.19), we have 

 

        

 (3.20) 

Finally, it can be finished by taking the limit as . 

 

The following proposition is devoted to the proof of Theorem 1.1. In addition, we will establish sharp local estimates for the 
solutions in a neighborhood of a boundary point. 

Proposition 3.3  Let  be an arbitrary bounded domain in ,  and . Suppose 

                   (3.21) 

where  are non-negative constants and . Then for every , 

 

       

 (3.22) 

and 

 

         

 (3.23) 

where  is a positive constant depending on . 

Proof. Since  in , by an interior estimate for solutions of the elliptic equations (see 

[1,7]) 

 

                     

 (3.24) 

for . Let  be a point on the boundary of  such that . Since  and 

, we have . By Lemma 3.1 and , 

                (3.25) 

Next, we analyse the upper estimate of the right side of (3.25) by Lemma 3.2. Since , thus . 

By the condition  in  and 

  (3.26) 

we have  in . Therefore Lemma 3.2 holds with  in place of  in place of  

and , i.e., 

                          (3.27) 

By (3.24), (3.25) and (3.27), we obtain 
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 (3.28) 

Clearly, , so that (3.28) implies .  

Based on the interior estimate for solutions of the elliptic equations 

  (3.29) 

the process of the proof (3.23) is the similar as the estimate of . 

The proof of theorem 1.1. 

By Proposition 3.3, it’s also known that the gradients of solutions in the neighborhood of all boundary points of  are 

bounded. Thus we complete the proof of theorem 1.1. 
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