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ABSTRACT 

The energy of a graph   is related to the sum of  -electron energy in a molecule represented by a molecular graph, and 

originated by the  HMO (Hückel molecular orbital) theory.  Advances to this theory have taken place which includes the 
difference of the energy of graphs and the energy formation difference between a graph and its decomposable parts. 
Although the complete graph does not have the highest energy of all graphs, it is significant in terms of its easily 
accessible graph theoretical properties, and has a  high level of connectivity and robustness, for example. In this paper we 
introduce a ratio, the eigen-complete difference ratio, involving the difference in energy between the complete graph and 
any other connected graph G, which allows for the investigation of the effect of energy of G with respect to the complete 
graph when a large number of vertices are involved. This is referred to as the eigen-complete difference domination effect. 
This domination effect is greatest negatively (positively), for a strongly regular graph (star graphs with rays of length one), 
respectively, and zero for the lollipop graph. When this ratio is a function f(n), of the order of a graph, we attach the 
average degree of G to the Riemann integral to investigate the eigen-complete difference area aspect of classes of 
graphs.  We applied these eigen-complete aspects to complements of classes of graphs. 
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TYPE (METHOD/APPROACH) 

By mapping the atoms and bonds of a molecule onto the vertices and edges of a graph G, respectively, it is important in 
terms of structure and connectivity to consider the effect of the energy of G with respect to the energy of a complete 
graph. By introducing a ratio, similar to that of other known ratios (such: integral eigen-pair, tree-cover, h-eigen formation, 
t-complete eigen, chromatic-cover)  involving the difference in energy between the complete graph and any other graph G, 
we allowed for the  investigation of the effect of the energy  G with respect to the energy of the complete graph, when a 
large number of vertices (atoms) are involved, known as the domination effect, with its associated interval. 
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1. INTRODUCTION 

In this paper graphG will be on n vertices.  We shall adopt the definitions and notation of Harris, Hirst, and Mossinghoff  
[6].   It is assumed that G is simple, that is, it does not contain loops or parallel edges. 

The energy of a graph is the sum of the absolute values of the eigenvalues of the adjacency matrix of the graph in 
consideration. This quantity is studied in the context of spectral graph theory. In short, for an n -vertex graph G with 

adjacency matrix A having eigenvalues n  21 , the energy )(GE   is defined as:   




n

i

iGE

1

  

It is related to the sum of  -electron energy in a molecule represented by a molecular graph. If we know some chemistry, 

then we might fully appreciate the origin of graph energy. In a private communication, Gutman (see Gutman [5]) claimed 
that the HMO (Hückel molecular orbital) theory is nowadays superseded by new theories that provide better explanations 
and which do not make unnecessary assumptions. 

Graph energy became a very popular topic of mathematical research; this is evident in the reviews and recent papers. 

In Sarvate and Winter [9] the difference between the energy of a graph and the sum of the energies of its decomposable 
multi-subgraphs is investigated. 

In the paper “Energy of Graphs” by Brualdi[3], the difference of the energy of two graphs G and H on the same number n 
of vertices is presented.  

Although the complete graph nK  does not have the maximum energy of all graphs (see Haemers), it is a very important 

and well-studied class of graphs – for example it has a high degree of connectiveness and robustness. Thus one would 
like to compare its energy with the energy of any other graph G in terms of how close their energies are, and how the 

energy of G compares with the energy of nK  where a large number of vertices are involved. This energy idea can be 

translated to that of molecules made up of atoms with bonds, where we map the atoms to vertices and bonds to edges, 
and the domination effect will allow for the investigation of how other molecular energies compare with that of a molecule 
with all possible bonds between atoms. 

The eigen-complete difference ratio allowed for the investigation of the domination effect of the energy of graphs on the 
energy of the complete graph when a large number of vertices are involved. We found that this domination effect is the 
greatest negatively (positively) for a strongly regular graph (star graphs with rays of length one), respectively. and is zero 
for the lollipop graph. 

Ratios and graphs 

Ratios have been an important aspect of graph theoretical definitions. Examples of ratios are:  expanders, (see  Alon and 
Spencer [1]), the central ratio of a graph (see Buckley [2]), eigen-pair ratio of classes of graphs (see Winter and 
Jessop[12[), Independence and Hall ratios (see Gábor[4]), tree-cover ratio of graphs (see Winter and Adewusi[11]),  
eigen-energy formation ratio of graphs (see Winter and Sarvate[13]), t-compete sequence ratio (see Winter, Jessop and 
Adewusi [14]i)  and the chromatic-cover ratio of graphs (see Winter[10]). 

We now introduce the idea of ratio, asymptotes and areas involving energy difference between the complete graph and G, 
similar to that of  Winter and Adewusi [11],Winter  and Jessop 12], Winter and Sarvate [13],  Winter, Jessop and Adewusi 
]14],  and Winter [10]. 

2. EIGEN-COMPLETE DIFFERENCE RATIO- ASYMPTOTES, DOMINATION EFFECT AND 
AREA 

Let nK  be the complete graph on n vertices.  

Definition 2.1 

The difference between the energy of  nK  and a connected graph G on the same number of vertices n and m’ edges is 

given by: 

)()( GEKED n
G
n   

And is called the eigen-complete difference associated with G. 

If the graph G in belongs to a class   of graphs of order n, then the complete-energy difference associated with   is 

defined as: 

 GGEKED nn );()( . 

Dividing the complete-energy difference by the energy of nK   will give an “average” of the complete-energy difference with 

respect to G. This provides motivation for the following definition: 

http://en.wikipedia.org/wiki/Noga_Alon
http://en.wikipedia.org/wiki/Joel_Spencer
http://www.sciencedirect.com/science/article/pii/0012365X82901649
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Definition 2.2 

The eigen-complete difference ratio with respect to )(G , respectively, is defined as: 

)(

)()(

n

nG
n

KE

GEKE
DRat


 ; 


 G

KE

GEKE
DRat

n

n
n ;

)(

)()(
 

Definition 2.3 

If the eigen-complete difference ratio is a function f(n) of the order of G , then its horizontal asymptote results in the 

eigen-complete difference asymptote: 







 G
KE

GEKE
LimDAsymrat

n

n

n
n ];

)(

)()(
[  

This asymptote allows for the investigation of the effect of the energy of a graph G on the complete graph when a large 
number of vertices are involved, referred to as the  dominationeigen-complete difference effect. 

Definition 2.4 

Attaching the average degree of graph G, with m’ edges, to the Riemann integral of   


 G
KE

GEKE
DRat

n

n
n ;

)(

)()(
we 

obtain the eigen-complete difference area: 




 dn
KE

GEKE

n

m
DArat

n

n
n ]

)(

)()(
[

'2
;  with 0

kDArat  where k is the smallest order of G . 

The average degree is referred to as the length of the area, while the integral part is the height of the area. 

Lemma 1 

The eigen-complete difference ratio can take on one of the following: 

(1) 


  G
KE

GE

KE

GEKE
DRatKEGE

nn

n
nn ;0

)(

)(
1

)(

)()(
)()(  

(2) 


  G
KE

GE

KE

GEKE
DRatKEGE

nn

n
nn ;0

)(

)(
1

)(

)()(
)()(  

(3) n
n

n
nn KG

KE

GEKE
DRatKEGE 


  ;0

)(

)()(
)()(  

3. EXAMPLES OF EIGEN-COMPLETE RATIOS, ASYMPTOTES AND AREAS USING 
CLASSES OF GRAPHS 

3.1 The complete split-bipartite graph 
2

,
2

nnK . 

The energy of this graph is n and it has 
4

2n
edges while that of the complete graph is  2n-2 so that: 
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3.2 The star graph  1,1 nK with n-1 rays of length1. 

The energy of this star graph is 12 n  so that: 

1

1
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12)22(

22

)()( 1,1
























nn

nn

n

KEKE
DRat

nn
n  

1]
1

1
1[ 








n
LimDAsymrat
n

n  

]12[
)1(2

]
1

1
1[

)1(2
cnn

n

n
dn

nn

n
DArat n 








 


 

With smallest star graph on 2 vertices we have: 

0c . 

3.3 Star graphs 2,rS  with r rays of length 2 

The energy of this star graph with 1 nr edges is: 

123  nn so that: 
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The smallest such star graph is non 3 vertices so that 
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And eigen-complete difference area is: 
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3.4  The line graph of nK  
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The line graph  )( nKL of  nK   has 
2

)1( 


nn
p  vertices and energy nn 62 2   (see Brualdi [3]).  The number q of edges 

is the sum of the square of the degrees minus the number of edges of nK : 
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So that the eigen-complete area of the line graph of nK  on p vertices is: 
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3.5 Strongly regular graphs 

Koolen and Moulton have proved that the energy of a graph on n vertices is at most n(1+ n )/2, and that equality holds if 

and only if the graph is strongly regular with parameters  (n,(n+ n )/2,(n+2 n )/4,(n+2 n )/4). Such graphs are 

equivalent to a certain type of Hadamard matrices. Here we survey constructions of these Hadamard matrices and the 

related strongly regular graphs (see Haemers [7]). 

Its energy is 
2

)1( nn 
 and to find the number of edges m’ we use: 

http://academic.research.microsoft.com/Keyword/17286/hadamard-matrices
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So the eigen-complete area (without absolute sign) is: 
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The term 2
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3.6  Lollipop graph 

The proof of the following theorem can be found inHaemers, Liu and Zhang [9]: 

Theorem 1 

Let G be a graph with an end vertex 1x  adjacent to vertex 2x , and let 'G  be the subgraph of G induced by removing the 

vertex 1x . and let ''G  be the subgraph of G induced by removing the vertex 2x .   Then:  

)()()( )''()'()(  GAGAGA PPP   

Where  )()( GAP  is the characteristic polynomial ))(det( IGA  , and )(GA the adjacency matrix of G . 

Example with complete graph joined to end vertex  

So if LP(G) is the complete graph on n-1vertices (the base of the lollipop graph)  joined to a single end vertex 2x  by an 

edge 21xx , we have: 
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Roots of quadratic are: 
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Theorem 2 

The energy of the lollipop graph with base the complete graph on n-1 vertices is: 
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For large n, the numerator is of order 6n and the denominator is of order 
24n  so that: 
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Theorem 3 


nDRat ; 


nDAsymrat and


nDArat  for the following classes of graphs are, respectively: 
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Lemma 2 
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Proof 

Since 0)( GE  for any graph G we get the right hand inequality: 
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  we get the left hand inequality. 

Lemma  3 

The domination eigen-complete effect is at most one and is greatest negatively for the strongly regular graph examined in 
the above example. 

Proof 

The strongly regular graph in the above example has the greatest energy of all graphs so that:  









 ]
24

43
[

n

nnn
LimDAsymrat
n

n  

The above lemmas can be used to verify the following theorem: 

Theorem 4 

]1,(
nDAsymrat with end points attained for the strongly regular graph and star graphs with rays of length 1, 

respectively, and 0
nDAsymrat  for the lollipop graph . 

Corollary 1 

The eigen-complete difference height of the strongly regular graph above is the greatest of all eigen-complete heights. 
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Proof 

Since )'())(( GEGSRE   for any graph 'G  we have: 
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Conjecture 1 

Except for strongly regular graphs, the eigen-complete difference asymptote lies on the interval [-1,1]. 

4. EIGEN-COMPLETE DIFFERENT RATIOS OF COMPLEMENTS OF CLASSES OF 
GRAPHS 

4.1 The complete-split bipartite graph 

The complement of 

2
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nK . It energy is therefore: 
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Smallest such graph occurs for n=4 so that: 
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Thus with f(n) and g(n) we associate the quadratic  
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The second difference involving  (1), (2) and (3) is an arithmetic sequence with common difference 2. Thus we have the 
following theorem: 

Theorem 5 

The eigen-difference ratio g(n)of the complete-split bipartite and the eigen-difference ratio  f(n) its complement  g(n) are 
related by the following equation: 

)2(

)('2
)(

2

1
)('







n

ng
nf

n
nf  

This results in the differential equation: 

2)1)(2(

1
)(

2

1))((







nn
nf

ndn

nfd
 

 With general solution: 

)2()1)(2(

1
)(







n

c

nn
nf  

Corollary 2 

The equation in the above theorem yields the following quadratic  sequence: 

,...23,...,6,2,0 2  nn  

With second difference sequence with common difference 2: 

2,4,6,….,2n-2,… 

4.2. Star graphs with rays of length 1 

The compliment of the star graph with rays of length one  (on at least three vertices) is a complete graph on n-1 vertices 
together with an isolated vertex. Its energy is therefore: 
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For n=3 we get 2lnc . 

4.3 The lollipop graph with complete graph on n-1 vertices as base 

The compliment of the lollipop graph consists of  a star graphs on n-1 vertices and an isolated vertex. Its energy is 

therefore  22 n  
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Thus:  
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Taking  n=3 we get: 
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5. CONCLUSION 

In this paper we used the idea of energy difference between two graphs and the significance of the complete graph to 
formulate the eigen-complete difference ratio which allowed for the investigation of the domination effect that the energy of 
graphs have with respect to the complete graph when a large number of vertices are involved. This idea can be adopted 
by molecules with a large number of atoms where the need to examine molecules whose energy may dominate the 
molecule that is very well bonded. We found that a strongly regular graph dominated in the largest negative way, while the 
star graph with rays of length one had a domination effect of one- the largest possible positive domination effect. The 
lollipop graph with base the complete graph had domination effect of zero.  

We attached the average degree to the Riemann integral of this eigen-complete ratio to determine eigen-complete areas 
associated with classes of graphs and applied the above ideas to the complement of classes of graphs. We showed that 
the eigen-complete difference ratios of the complete-split bipartite graph and its complement  are related by a differential 
equation with an associated quadratic sequence with second difference being a sequence with common difference of two. 
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