THE EIGEN-COMPLETE DIFFERENCE RATIO OF CLASSES OF GRAPHSDOMINATION, ASYMPTOTES AND AREA

Paul August Winter ${ }^{1}$ and Samson Ogagoghene Ojako²
University of Kwazulu-Natal, King George V Avenue, Durban, 4041, South Africa
winter@ukzn.ac.za
University of Kwazulu-Natal, King George V Avenue, Durban, 4041, South Africa
ojakosamson@gmail.com

Abstract

The energy of a graph is related to the sum of π-electron energy in a molecule represented by a molecular graph, and originated by the HMO (Hückel molecular orbital) theory. Advances to this theory have taken place which includes the difference of the energy of graphs and the energy formation difference between a graph and its decomposable parts. Although the complete graph does not have the highest energy of all graphs, it is significant in terms of its easily accessible graph theoretical properties, and has a high level of connectivity and robustness, for example. In this paper we introduce a ratio, the eigen-complete difference ratio, involving the difference in energy between the complete graph and any other connected graph G, which allows for the investigation of the effect of energy of G with respect to the complete graph when a large number of vertices are involved. This is referred to as the eigen-complete difference domination effect. This domination effect is greatest negatively (positively), for a strongly regular graph (star graphs with rays of length one), respectively, and zero for the lollipop graph. When this ratio is a function $f(n)$, of the order of a graph, we attach the average degree of G to the Riemann integral to investigate the eigen-complete difference area aspect of classes of graphs. We applied these eigen-complete aspects to complements of classes of graphs.

Indexing terms/Keywords

Graph energy; energy difference between graphs; ratios, domination; asymptotes; areas.
Academic Discipline And Sub-Disciplines
Combinatorics and Graph Theory.

SUBJECT CLASSIFICATION

AMS Classification: 05C50.

TYPE (METHOD/APPROACH)

By mapping the atoms and bonds of a molecule onto the vertices and edges of a graph G , respectively, it is important in terms of structure and connectivity to consider the effect of the energy of G with respect to the energy of a complete graph. By introducing a ratio, similar to that of other known ratios (such: integral eigen-pair, tree-cover, h-eigen formation, t -complete eigen, chromatic-cover) involving the difference in energy between the complete graph and any other graph G , we allowed for the investigation of the effect of the energy G with respect to the energy of the complete graph, when a large number of vertices (atoms) are involved, known as the domination effect, with its associated interval.

Council for Innovative Research

1. INTRODUCTION

In this paper graph G will be on n vertices. We shall adopt the definitions and notation of Harris, Hirst, and Mossinghoff [6]. It is assumed that G is simple, that is, it does not contain loops or parallel edges.
The energy of a graph is the sum of the absolute values of the eigenvalues of the adjacency matrix of the graph in consideration. This quantity is studied in the context of spectral graph theory. In short, for an n -vertex graph G with adjacency matrix A having eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, the energy $E(G)$ is defined as: $E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|$

It is related to the sum of π-electron energy in a molecule represented by a molecular graph. If we know some chemistry, then we might fully appreciate the origin of graph energy. In a private communication, Gutman (see Gutman [5]) claimed that the HMO (Hückel molecular orbital) theory is nowadays superseded by new theories that provide better explanations and which do not make unnecessary assumptions.
Graph energy became a very popular topic of mathematical research; this is evident in the reviews and recent papers.
In Sarvate and Winter [9] the difference between the energy of a graph and the sum of the energies of its decomposable multi-subgraphs is investigated.
In the paper "Energy of Graphs" by Brualdi[3], the difference of the energy of two graphs G and H on the same number n of vertices is presented.

Although the complete graph K_{n} does not have the maximum energy of all graphs (see Haemers), it is a very important and well-studied class of graphs - for example it has a high degree of connectiveness and robustness. Thus one would like to compare its energy with the energy of any other graph G in terms of how close their energies are, and how the energy of G compares with the energy of K_{n} where a large number of vertices are involved. This energy idea can be translated to that of molecules made up of atoms with bonds, where we map the atoms to vertices and bonds to edges, and the domination effect will allow for the investigation of how other molecular energies compare with that of a molecule with all possible bonds between atoms.

The eigen-complete difference ratio allowed for the investigation of the domination effect of the energy of graphs on the energy of the complete graph when a large number of vertices are involved. We found that this domination effect is the greatest negatively (positively) for a strongly regular graph (star graphs with rays of length one), respectively. and is zero for the lollipop graph.

Ratios and graphs

Ratios have been an important aspect of graph theoretical definitions. Examples of ratios are: expanders, (see Alon and Spencer [1]), the central ratio of a graph (see Buckley [2]), eigen-pair ratio of classes of graphs (see Winter and Jessop[12[), Independence and Hall ratios (see Gábor[4]), tree-cover ratio of graphs (see Winter and Adewusi[11]), eigen-energy formation ratio of graphs (see Winter and Sarvate[13]), t-compete sequence ratio (see Winter, Jessop and Adewusi [14]i) and the chromatic-cover ratio of graphs (see Winter[10]).

We now introduce the idea of ratio, asymptotes and areas involving energy difference between the complete graph and G , similar to that of Winter and Adewusi [11],Winter and Jessop 12], Winter and Sarvate [13], Winter, Jessop and Adewusi]14], and Winter [10].

2. EIGEN-COMPLETE DIFFERENCE RATIO- ASYMPTOTES, DOMINATION EFFECT AND AREA

Let K_{n} be the complete graph on n vertices.

Definition 2.1

The difference between the energy of K_{n} and a connected graph G on the same number of vertices n and m ' edges is given by:
$\left\langle D_{n}^{G}=E\left(K_{n}\right)-E(G)\right.$
And is called the eigen-complete difference associated with G.
If the graph G in belongs to a class \mathfrak{I} of graphs of order n , then the complete-energy difference associated with \mathfrak{I} is defined as:
$\left\langle D_{n}^{\mathfrak{I}}=E\left(K_{n}\right)-E(G) ; G \in \mathfrak{J}\right.$.
Dividing the complete-energy difference by the energy of K_{n} will give an "average" of the complete-energy difference with respect to G. This provides motivation for the following definition:

Definition 2.2

The eigen-complete difference ratio with respect to $G(\mathfrak{J})$, respectively, is defined as:
$\operatorname{Rat}\left\langle D_{n}^{G}=\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)} ; \operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)} ; G \in \mathfrak{I}\right.\right.$

Definition 2.3

If the eigen-complete difference ratio is a function $\mathrm{f}(\mathrm{n})$ of the order of $G \in \mathfrak{J}$, then its horizontal asymptote results in the eigen-complete difference asymptote:
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{I}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)}\right] ; G \in \mathfrak{J}\right.$
This asymptote allows for the investigation of the effect of the energy of a graph G on the complete graph when a large number of vertices are involved, referred to as the dominationeigen-complete difference effect.

Definition 2.4

Attaching the average degree of graph G, with m' edges, to the Riemann integral of $\operatorname{Rat}\left\langle D_{n}^{\mathfrak{I}}=\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)} ; G \in \mathfrak{I}\right.$ we obtain the eigen-complete difference area:
$\left.\operatorname{Arat}\left\langle D_{n}^{\mathfrak{J}}=\frac{2 m^{\prime}}{n}\right| \int\left[\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)}\right] d n \right\rvert\, ;$ with $\operatorname{Arat}\left\langle D_{k}^{\mathfrak{J}}=0\right.$ where k is the smallest order of $G \in \mathfrak{J}$.
The average degree is referred to as the length of the area, while the integral part is the height of the area.

Lemma 1

The eigen-complete difference ratio can take on one of the following:
(1) $E(G)<E\left(K_{n}\right) \Rightarrow \operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)}=1-\frac{E(G)}{E\left(K_{n}\right)}>0 ; G \in \mathfrak{J}\right.$
(2) $E(G)>E\left(K_{n}\right) \Rightarrow \operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)}=1-\frac{E(G)}{E\left(K_{n}\right)}<0 ; G \in \mathfrak{J}\right.$
(3) $\quad E(G)=E\left(K_{n}\right) \Rightarrow \operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\frac{E\left(K_{n}\right)-E(G)}{E\left(K_{n}\right)}=0 ; G \in K_{n}\right.$

3. EXAMPLES OF EIGEN-COMPLETE RATIOS, ASYMPTOTES AND AREAS USING CLASSES OF GRAPHS

3.1 The complete split-bipartite graph $K_{\frac{n}{n}, \frac{n}{2}}$.

The energy of this graph is n and it has $\frac{n^{2}}{4}$ edges while that of the complete graph is $2 \mathrm{n}-2$ so that:
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E\left(K_{\frac{n}{2}, \frac{n}{2}}\right)}{2 n-2}\right]=\frac{(2 n-2)-n}{2 n-2}=\frac{n-2}{2 n-2}=\frac{n-2}{2 n-2}\right.$
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{I}}=\underset{n \rightarrow \infty}{\operatorname{Lim}[}\left[\frac{n-2}{2 n-2}\right]=\frac{1}{2}\right.$
$\operatorname{Arat}\left\langle D_{n}^{\mathfrak{I}}=\frac{n}{2} \int\left[\frac{n-2}{2 n-2}\right] d n=\frac{n}{4} \int \frac{n-2}{n-1} d n=\frac{n}{4}(n-\ln (n-1)+c)\right.$ with smallest order 2 we have :
$c=2$

3.2The star graph $K_{1, n-1}$ with \mathbf{n} - 1 rays of length1.

The energy of this star graph is $2 \sqrt{n-1}$ so that:
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E\left(K_{1, n-1}\right)}{2 n-2}\right]=\frac{(2 n-2)-2 \sqrt{n-1}}{2(n-1)}=1-\frac{1}{\sqrt{n-1}}\right.$

$\operatorname{Arat}\left\langle D_{n}^{\mathfrak{I}}=\frac{2(n-1)}{n} \int\left[1-\frac{1}{\sqrt{n-1}}\right] d n=\frac{2(n-1)}{n}[n-2 \sqrt{n-1}+c]\right.$
With smallest star graph on 2 vertices we have:
$c=0$.

3.3 Star graphs $S_{r, 2}$ with r rays of length 2

The energy of this star graph with $r=n-1$ edges is:
$n-3+\sqrt{2} \sqrt{n+1}$ so that:
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E\left(K_{1, n-1}\right)}{2 n-2}\right]=\frac{(2 n-2)-(n-3+\sqrt{2} \sqrt{n+1})}{2 n-2}=\frac{n+1-\sqrt{2} \sqrt{n+1}}{2 n-2}\right.$
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{J}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{n+1-\sqrt{2} \sqrt{n+1}}{2 n-2}\right]=\frac{1}{2}\right.$
$\operatorname{Arat}\left\langle D_{n}^{\mathfrak{J}}=\frac{2(n-1)}{n} \int\left[\frac{n+1-\sqrt{2} \sqrt{n+1}}{2 n-2}\right] d n=\frac{2(n-1)}{n} \int\left[\frac{n-1}{2(n-1)}+\frac{2}{2(n-1)}-\frac{1}{\sqrt{2}} \frac{\sqrt{n+1}}{\sqrt{n-1}}\right] d n\right.$
$=\frac{2(n-1)}{n}\left[\frac{n}{2}+\ln (n-1)-\frac{1}{\sqrt{2}} \cdot A+c\right]$
$A=\int \frac{\sqrt{n+1}}{\sqrt{n-1}} d n=$ let $n=u^{2}+1 \Rightarrow d n=2 u d u \Rightarrow A=\int \frac{\sqrt{u^{2}+2}}{u} 2 u d u$.
Put $u=\sqrt{2} \tan t$ so that $A=4 \int \sec ^{3} t d t=4\left[\frac{\sec t \tan t+\ln (\sec t+\tan t)}{2}\right]$
Thus: $A=2\left[\frac{\sqrt{n+1}}{\sqrt{2}} \frac{\sqrt{n-1}}{\sqrt{2}}+\ln \left(\frac{\sqrt{n+1}}{\sqrt{2}}+\frac{\sqrt{n-1}}{\sqrt{2}}\right)\right]=\sqrt{n^{2}-1}+2 \ln \left(\frac{\sqrt{n+1}}{\sqrt{2}}+\frac{\sqrt{n-1}}{\sqrt{2}}\right)$
The smallest such star graph is non 3 vertices so that

$$
\left.A=\sqrt{8}+2 \ln \left(\frac{\sqrt{10}+\sqrt{8}}{\sqrt{2}}\right)\right)=\sqrt{8}+2 \ln (2+\sqrt{5})
$$

Thus:
$c=2+\sqrt{2} \ln (2+\sqrt{5})-\frac{3}{2}-\ln 2$
And eigen-complete difference area is:
$=\frac{2(n-1)}{n}\left[\frac{n}{2}+\ln (n-1)-\frac{1}{\sqrt{2}} \cdot\left[\sqrt{n^{2}-1}+2 \ln \left(\frac{\sqrt{n+1}}{\sqrt{2}}+\frac{\sqrt{n-1}}{\sqrt{2}}\right)\right]+2+\sqrt{2} \ln (2+\sqrt{5})-\frac{3}{2}-\ln 2\right]$

3.4 The line graph of K_{n}

The line graph $L\left(K_{n}\right)$ of K_{n} has $p=\frac{n(n-1)}{2}$ vertices and energy $2 n^{2}-6 n$ (see Brualdi [3]). The number q of edges is the sum of the square of the degrees minus the number of edges of K_{n} :
$q=n \frac{(n-1)^{2}}{2}-\frac{n(n-1)}{2}=\frac{n(n-1)}{2}[n-1-1]=\frac{n(n-1)(n-2)}{2}$
$2 n^{2}-6 n=4 \frac{n(n-1)}{2}-4 n=4 p-4 n$
$n^{2}-n-2 p=0 \Rightarrow n=\frac{1 \pm \sqrt{1+8 p}}{2}=\frac{1+\sqrt{1+8 p}}{2}$
Thus:
$E\left(L\left(K_{n}\right)\right)=2 n^{2}-6 n=4 \frac{n(n-1)}{2}-4 n=4 p-2-2 \sqrt{1+8 p}$
$\operatorname{Rat}\left\langle D_{p}^{\mathfrak{J}}=\left[\frac{E\left(K_{p}\right)-E\left(L\left(K_{n}\right)\right)}{E\left(K_{p}\right)}\right]=\frac{2 p-2-4 p+2+\sqrt{1+8 p}}{2 p-2}=\frac{-2 p+\sqrt{1+8 p}}{2 p-2}\right.$
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{I}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{-2 p-\sqrt{1+8 p}}{2 p-2}\right]=-1\right.$
$\left.\operatorname{Arat}\left\langle D_{n}^{\mathfrak{J}}=\frac{2 q}{p}\right| \int \frac{-2 p+\sqrt{1+8 p}}{2 p-2} d p \right\rvert\,=$ omit absolute sign
$n \frac{2 q}{p} \int\left[-\frac{2 p-2}{2 p-2}+\frac{-2+\sqrt{1+8 p}}{2 p-2}\right] d p ; u^{2}=1+8 p \Rightarrow d p=\frac{u d u}{4} ; p=\frac{u^{2}-1}{8}$
$=\frac{2 q}{p}\left[(-p)+\int \frac{(-2+u)}{\left(\frac{u^{2}-1}{4}-2\right)} \frac{u d u}{4}\right]=\frac{2 q}{p}\left[(-p)+\int \frac{(-2+u)}{\frac{u^{2}-9}{4}} \frac{u d u}{4}\right]=\frac{2 q}{p}\left[(-p)+\int \frac{u^{2}-2}{u^{2}-9} d u\right]$
$=\frac{2 q}{p}\left[(-p)+\int d u+\int \frac{7}{u^{2}-9} d u\right]=$ replacing absolute sign
$\frac{2 q}{p}\left[p-\sqrt{1+8 p}-\frac{7}{6}\left(\ln (\sqrt{1+8 p}-3)+\frac{7}{6} \ln (\sqrt{1+8 p}+3)\right]+c\right.$
$p=3$ yields:
$c=-3+5+\frac{7}{6}\left(\ln (2)-\frac{7}{6} \ln (8)=2+\frac{7}{6}\left(\ln (2)-\frac{7}{6} \ln (8)\right.\right.$
So that the eigen-complete area of the line graph of K_{n} on p vertices is:
$\frac{2 q}{p}\left[p-\sqrt{1+8 p}-\frac{7}{6}\left(\ln (\sqrt{1+8 p}-3)+\frac{7}{6} \ln (\sqrt{1+8 p}+3)+2+\frac{7}{6}\left(\ln (2)-\frac{7}{6} \ln (8)\right]\right.\right.$

3.5Strongly regular graphs

Koolen and Moulton have proved that the energy of a graph on n vertices is at most $\mathrm{n}(1+\sqrt{n}) / 2$, and that equality holds if and only if the graph is strongly regular with parameters $(\mathrm{n},(\mathrm{n}+\sqrt{n}) / 2,(\mathrm{n}+2 \sqrt{n}) / 4,(\mathrm{n}+2 \sqrt{n}) / 4)$. Such graphs are equivalent to a certain type of Hadamard matrices. Here we survey constructions of these Hadamard matrices and the related strongly regular graphs (see Haemers [7]).
Its energy is $\frac{n(1+\sqrt{n})}{2}$ and to find the number of edges m ' we use:
$\sum_{1}^{n} d(v)=2 m^{\prime} \Rightarrow n \frac{(n+\sqrt{n})}{2}=2 m^{\prime} \Rightarrow m^{\prime}=\frac{n(n+\sqrt{n})}{4}$
Thus $\operatorname{Rat}\left\langle D_{n}^{\mathfrak{I}}=\left[\frac{E\left(K_{n}\right)-E(S R(G))}{2 n-2}\right]=\frac{(2 n-2)-\frac{n(1+\sqrt{n})}{2}}{2 n-2}=\frac{3 n-n \sqrt{n}-4}{4 n-4}\right.$
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{I}}=\underset{n \rightarrow \infty}{\operatorname{Lim}}\left[\frac{3 n-n \sqrt{n}-4}{4 n-4}\right]=-\infty\right.$
$\left.\operatorname{Arat}\left\langle D_{n}^{\mathfrak{I}}=\frac{2 m^{\prime}}{n}\right| \int\left[\frac{3 n-n \sqrt{n}-4}{4 n-4}\right] d n\left|=\frac{(n+\sqrt{n})}{2}\right| \int\left[\frac{3 n-n \sqrt{n}-4}{4 n-4}\right] d n \right\rvert\,=$ removing absolute
$\frac{(n+\sqrt{n})}{2} \int\left[\frac{3}{4}\left(\frac{4 n-4}{4 n-4}\right)-\left(\frac{1+n \sqrt{n}}{4 n-4}\right)\right] d n=\frac{(n+\sqrt{n})}{2}\left[\frac{3}{4} n-\int \frac{1+n \sqrt{n}}{4 n-4} d n\right]$
Now $\int \frac{1+n \sqrt{n}}{4 n-4} d n=\frac{1}{4} \ln (n-1)+\frac{1}{4} \int \frac{n \sqrt{n}}{n-1} d n=$ put $n=u^{2}: \frac{1}{4} \ln (n-1)+\frac{1}{4} \int \frac{u^{2} u}{u^{2}-1} 2 u d u$
But $\frac{1}{2} \int \frac{u^{4}}{u^{2}-1} d u=\frac{1}{2} \int u^{2} \frac{u^{2}-1}{u^{2}-1}+\frac{u^{2}}{u^{2}-1} d u=\frac{1}{6} u^{3}+\frac{1}{2} \int \frac{u^{2}-1}{u^{2}-1}+\frac{1}{u^{2}-1} d u$
$=\frac{1}{6} u^{3}+\frac{1}{2} u+\frac{1}{2} \ln \frac{u-1}{u+1}=\frac{1}{6} n^{\frac{3}{2}}+\frac{1}{2} \sqrt{n}+\frac{1}{2} \ln \frac{\sqrt{n}-1}{\sqrt{n}+1}$
So the eigen-complete area (without absolute sign) is:
$\frac{(n+\sqrt{n})}{2}\left[\frac{3}{4} n-\frac{1}{4} \ln (n-1)-\frac{1}{6} n^{\frac{3}{2}}-\frac{1}{2} \sqrt{n}-\frac{1}{2} \ln \frac{\sqrt{n}-1}{\sqrt{n}+1}+c\right]$
The term $n^{\frac{3}{2}}$ dominates for large n , so introducing absolute sign:
$\frac{(n+\sqrt{n})}{2}\left[\frac{1}{6} n^{\frac{3}{2}}-\frac{3}{4} n+\frac{1}{4} \ln (n-1)+\frac{1}{2} \sqrt{n}+\frac{1}{2} \ln \frac{\sqrt{n}-1}{\sqrt{n}+1}+c\right]$

3.6 Lollipop graph

The proof of the following theorem can be found inHaemers, Liu and Zhang [9]:

Theorem 1

Let G be a graph with an end vertex x_{1} adjacent to vertex x_{2}, and let G^{\prime} be the subgraph of G induced by removing the vertex x_{1}. and let $G^{\prime \prime}$ be the subgraph of G induced by removing the vertex x_{2}. Then:
$P_{A(G)}(\lambda)=\lambda P_{A\left(G^{\prime}\right)}(\lambda)-P_{A\left(G^{\prime \prime}\right)}(\lambda)$
Where $P_{A(G)}(\lambda)$ is the characteristic polynomial $\operatorname{det}(A(G)-\lambda I)$, and $A(G)$ the adjacency matrix of G.

Example with complete graph joined to end vertex

So if $\operatorname{LP}(\mathrm{G})$ is the complete graph on n-1vertices (the base of the lollipop graph) joined to a single end vertex x_{2} by an edge $x_{1} x_{2}$, we have:
$P_{A(G)}(\lambda)=\lambda P_{A\left(G^{\prime}\right)}(\lambda)-P_{A\left(G^{\prime \prime}\right)}(\lambda)=\lambda(\lambda+1)^{n-2}(\lambda-(n-2))-\lambda(\lambda+1)^{n-3}(\lambda-(n-3))$
$\lambda(\lambda+1)^{n-3}[(\lambda+1)(\lambda-(n-2))-(\lambda-(n-3)]$
$\lambda(\lambda+1)^{n-3}\left[\lambda^{2}-\lambda(n-2)+\lambda-(n-2)-\lambda+(n-3)\right]$

$$
\lambda(\lambda+1)^{n-3}\left[\left(\lambda^{2}-\lambda(n-2)-1\right]\right.
$$

Roots of quadratic are:
$\lambda=\frac{(n-2) \pm \sqrt{n^{2}-4 n+4+4}}{2} ;$ we have roots:
$\lambda=0 ; \lambda=-1($ multipliticy $n-3) ; \lambda=\frac{(n-2)+\sqrt{n^{2}-4 n+8}}{2} ; \lambda=\frac{(n-2)-\sqrt{n^{2}-4 n+8}}{2}$
Energy of this graph is therefore: $0+1(n-3)+\frac{(n-2)+\sqrt{n^{2}-4 n+8}}{2}+\frac{\sqrt{n^{2}-4 n+8}-(n-2)}{2}$ since $n \geq 4$
$=(n-3)+\sqrt{n^{2}-4 n+8}$

Theorem 2

The energy of the lollipop graph with base the complete graph on $n-1$ vertices is:
$(n-3)+\sqrt{n^{2}-4 n+8}$
To find $\sum d v$ for this graph we have:
$\sum d v=(n-2)(n-2)+(n-1)+1=(n-2)(n-2)+n=n^{2}-3 n+4=2 m^{\prime}$
Thus:
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{I}}=\left[\frac{E\left(K_{n}\right)-E(L P(G))}{2 n-2}\right]=\frac{(2 n-2)-\left[(n-3)+\sqrt{n^{2}-4 n+8}\right]}{2 n-2}=\frac{n+1-\sqrt{n^{2}-4 n+8}}{2 n-2}\right.$
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{J}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{n+1-\sqrt{n^{2}-4 n+8}}{2 n-2}\right]\right.$

Multiply top and bottom of $\frac{n+1-\sqrt{n^{2}-4 n+8}}{2 n-2}$ by:
$n+1+\sqrt{n^{2}-4 n+8}: \frac{(n+1)^{2}-\left(n^{2}-4 n+8\right)}{(2 n-2)\left(n+1+\sqrt{n^{2}-4 n+8}\right)}$
For large n , the numerator is of order 6 n and the denominator is of order $4 n^{2}$ so that:
Asymrat $\left\langle D_{n}^{\mathfrak{I}}=\operatorname{Lim}\left[\frac{6 n}{4 n^{2}}\right]=0\right.$.
$\operatorname{Arat}\left\langle D_{n}^{\mathfrak{I}}=\frac{2 m^{\prime}}{n} \int\left[\frac{n+1-\sqrt{n^{2}-4 n+8}}{2 n-2}\right] d n=\frac{m^{\prime}}{n} \int \frac{n+1-\sqrt{n^{2}-4 n+8}}{n-1} d n\right.$
$=\frac{m^{\prime}}{n} \int\left[\frac{n-1}{n-1}+\frac{2-\sqrt{n^{2}-4 n+8}}{n-1}\right] d n=\frac{m^{\prime}}{n}\left[n+\int \frac{2-\sqrt{(n-2)^{2}+4}}{n-1} d n\right.$

Theorem 3

$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{I}} ; \operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{I}}\right.\right.$ and $\operatorname{Arat}\left\langle D_{n}^{\mathfrak{I}}\right.$ for the following classes of graphs are, respectively:
$\mathfrak{J}=K_{\frac{n}{2}, \frac{n}{2}}: \frac{n-2}{2 n-2} ; \frac{1}{2} ; \frac{n}{4}(n-\ln (n-1)+2)$.
$\mathfrak{I}=K_{1, n-1}: 1-\frac{1}{\sqrt{n-1}} ; 1 ; \frac{2(n-1)}{n}[n-2 \sqrt{n-1}]$.
$\mathfrak{I}=K_{2, r}: \frac{n+1-\sqrt{2} \sqrt{n+1}}{2 n-2} ; \frac{1}{2} ;$,
$\frac{2(n-1)}{n}\left[\frac{n}{2}+\ln (n-1)-\frac{1}{\sqrt{2}} \cdot\left[\sqrt{n^{2}-1}+2 \ln \left(\frac{\sqrt{n+1}}{\sqrt{2}}+\frac{\sqrt{n-1}}{\sqrt{2}}\right)\right]+2+\sqrt{2} \ln (2+\sqrt{5})-\frac{3}{2}-\ln 2\right]$.
$\mathfrak{I}=L\left(K_{n}\right): \frac{-2 p+\sqrt{1+8 p}}{2 p-2} ;-1 ; \frac{2 q}{p}\left[p-\sqrt{1+8 p}+\frac{7}{6}\left(\ln (\sqrt{1+8 p}-3)+\frac{7}{6} \ln (\sqrt{1+8 p}+3)+2+\frac{7}{6}\left(\ln (2)-\frac{7}{6} \ln (8)\right]\right.\right.$.
Where $q=\frac{n(n-1)(n-2)}{2}$
$\mathfrak{I}=S R(G): \frac{3 n-n \sqrt{n}-4}{4 n-4} ;-\infty ; \frac{(n+\sqrt{n})}{2}\left[\frac{1}{6} n^{\frac{3}{2}}-\frac{3}{4} n+\frac{1}{4} \ln (n-1)+\frac{1}{2} \sqrt{n}+\frac{1}{2} \ln \frac{\sqrt{n}-1}{\sqrt{n}+1}+c\right]$.
$\mathfrak{I}=L P(G): \frac{n+1-\sqrt{n^{2}-4 n+8}}{2 n-2} ; 0 ; \operatorname{Arat}\left\langle D_{n}^{\mathfrak{J}}=2 \frac{m^{\prime}}{n} \int\left[\frac{n+1-\sqrt{n^{2}-4 n+8}}{2 n-2}\right] d n\right.$.

Lemma 2

$\frac{3 n-n \sqrt{n}-4}{4 n-4} \leq \operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}} \leq 1\right.$
Proof
Since $E(G) \geq 0$ for any graph G we get the right hand inequality:
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E(G)}{2 n-2}\right] \leq\left[\frac{E\left(K_{n}\right)}{2 n-2}\right]=1\right.$
And since $E(G) \leq E(S R(G)) \Rightarrow E\left(K_{n}\right)-E(S R(G)) \geq 2 n-2-\frac{n(1+\sqrt{n})}{2}$ we get the left hand inequality.

Lemma 3

The domination eigen-complete effect is at most one and is greatest negatively for the strongly regular graph examined in the above example.
Proof
The strongly regular graph in the above example has the greatest energy of all graphs so that:
Asymrat $\left\langle D_{n}^{\mathfrak{J}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{3 n-n \sqrt{n}-4}{4 n-2}\right]=-\infty\right.$
The above lemmas can be used to verify the following theorem:

Theorem 4

Asymrat $\left\langle D_{n}^{\mathfrak{J}} \in(-\infty, 1]\right.$ with end points attained for the strongly regular graph and star graphs with rays of length 1 , respectively, and Asymrat $\left\langle D_{n}^{\mathfrak{J}}=0\right.$ for the lollipop graph .

Corollary 1

The eigen-complete difference height of the strongly regular graph above is the greatest of all eigen-complete heights.

Proof
Since $E(S R(G)) \geq E\left(G^{\prime}\right)$ for any graph $G^{\prime} \in \mathfrak{J}$ we have:
$\left|\int\left[\frac{E\left(K_{n}\right)-E((S R(G)}{E\left(K_{n}\right)}\right] d n\right|=\int\left[\frac{E\left(\left(S R(G)-E\left(K_{n}\right)\right.\right.}{E\left(K_{n}\right)}\right] d n \geq \int\left[\frac{E\left(G^{\prime}\right)-E\left(K_{n}\right)}{E\left(K_{n}\right)}\right] d n$

Conjecture 1

Except for strongly regular graphs, the eigen-complete difference asymptote lies on the interval $[-1,1]$.

4. EIGEN-COMPLETE DIFFERENT RATIOS OF COMPLEMENTS OF CLASSES OF GRAPHS

4.1 The complete-split bipartite graph

The complement of $K_{\frac{n}{2}, \frac{n}{2}}$ consists of two disjoint copies of $K_{\frac{n}{2}}$, It energy is therefore:
$2 n-4$ so that:
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E(G)}{2 n-2}\right]=\frac{2 n-2-(2 n-4)}{2 n-2}=\frac{2}{2 n-2}=\frac{1}{n-1} \operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{J}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{1}{n-1}\right]=0\right.\right.$
$\operatorname{Arat}\left\langle D_{n}^{\mathfrak{J}}=\frac{n-2}{2 n} \int\left[\frac{1}{n-1}\right] d n=\frac{n-2}{n}[\ln (n-1)+c]\right.$
Smallest such graph occurs for $n=4$ so that:
$c=-\ln 3$
The eigen-complete difference ratio for the complement of the complete-split bipartite graph is $f(n)=\frac{1}{n-1}$
The eigen-complete difference ratio of the original graph is:
$g(n)=\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E(G)}{2 n-2}\right]=\frac{2 n-2-n}{2 n-2}=\frac{n-2}{2 n-2}=\frac{n}{2 n-2}-\frac{2}{2 n-2}\right.$
$=\frac{n}{2} f(n)-f(n)=f(n)\left(\frac{n}{2}-1\right) \Rightarrow g^{\prime}(n)=\frac{f(n)}{2}+\frac{n f^{\prime}(n)}{2}-f^{\prime}(n)=f^{\prime}(n)\left[\frac{n}{2}-1\right]+\frac{f(n)}{2}$
$g^{\prime}(n)=\frac{(2 n-2)-2(n-2)}{(2 n-2)^{2}}=\frac{2}{(2 n-2)^{2}}=f^{\prime}(n)\left[\frac{n-2}{2}\right]+\frac{f(n)}{2} \Rightarrow f^{\prime}(n)+\frac{1}{n-2} f(n)$
$=\frac{2 g^{\prime}(n)}{(n-2)}=\frac{4}{(n-2)(2 n-2)^{2}}=\frac{1}{(n-2)(n-1)^{2}}$
$\frac{d(f(n))}{d n}+\frac{1}{n-2} f(n)=\frac{1}{(n-2)(n-1)^{2}} ; I F=(n-2) \Rightarrow(n-2) f(n)=\int \frac{1}{(n-1)^{2}} d n$
$\Rightarrow(n-2) f(n)=-\frac{1}{n-1}+c \Rightarrow f(n)=-\frac{1}{(n-2)(n-1)}+\frac{c}{(n-2)}$
$\Rightarrow \frac{1}{n-1}=-\frac{1}{(n-2)(n-1)}+\frac{c}{(n-2)} \Rightarrow 1=-\frac{1}{n-2}+\frac{c(n-1)}{n-2}$
$\Rightarrow n-2=-1+c(n-1) \Rightarrow c=1$
So $\Rightarrow f(n)=-\frac{1}{(n-2)(n-1)}+\frac{1}{(n-2)}$
Thus with $f(n)$ and $g(n)$ we associate the quadratic
$h(n)=n^{2}-3 n+2$
$h(n+1)-h(n)=n^{2}+2 n+1-3 n-3+2-n^{2}+3 n-2=2 n-2(1)$
$h(n+2)-h(n+1)=n^{2}+4 n+4-3 n-6+2-\left(n^{2}+2 n+1-3 n-3+2\right)=2 n(2)$
$h(n+3)-h(n+2)=n^{2}+6 n+9-3 n-9+2-\left(n^{2}+4 n+4-3 n-6+2\right)=2 n+2$ (3)
The second difference involving (1), (2) and (3) is an arithmetic sequence with common difference 2 . Thus we have the following theorem:

Theorem 5

The eigen-difference ratio $g(n)$ of the complete-split bipartite and the eigen-difference ratio $f(n)$ its complement $g(n)$ are related by the following equation:
$f^{\prime}(n)+\frac{1}{n-2} f(n)=\frac{2 g^{\prime}(n)}{(n-2)}$
This results in the differential equation:
$\frac{d(f(n))}{d n}+\frac{1}{n-2} f(n)=\frac{1}{(n-2)(n-1)^{2}}$
With general solution:
$f(n)=-\frac{1}{(n-2)(n-1)}+\frac{c}{(n-2)}$

Corollary 2

The equation in the above theorem yields the following quadratic sequence:
$0,2,6, \ldots, n^{2}-3 n+2, \ldots$
With second difference sequence with common difference 2 :
$2,4,6, \ldots ., 2 n-2, \ldots$

4.2. Star graphs with rays of length 1

The compliment of the star graph with rays of length one (on at least three vertices) is a complete graph on $n-1$ vertices together with an isolated vertex. Its energy is therefore:
$2 n-4$ so that:
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E(G)}{2 n-2}\right]=\frac{2 n-2-2 n+4}{2 n-2}=\frac{2}{2 n-2}=\frac{1}{n-1}\right.$.
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{J}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{1}{n-1}\right]=0\right.$
$\operatorname{Arat}\left\langle D_{n}^{\mathfrak{J}}=\frac{m^{\prime}}{n} \int\left[\frac{1}{n-1}\right] d n=\frac{(n-1)(n-2)}{2 n}[\ln (n-1)+c]\right.$.
For $\mathrm{n}=3$ we get $c=-\ln 2$.

4.3 The lollipop graph with complete graph on $\mathbf{n - 1}$ vertices as base

The compliment of the lollipop graph consists of a star graphs on $n-1$ vertices and an isolated vertex. Its energy is therefore $2 \sqrt{n-2}$
$\operatorname{Rat}\left\langle D_{n}^{\mathfrak{J}}=\left[\frac{E\left(K_{n}\right)-E(G)}{2 n-2}\right]=\frac{2 n-2-2 \sqrt{n-2}}{2 n-2}=\frac{n-1-\sqrt{n-2}}{n-1}=g(n)\right.$
$\operatorname{Asymrat}\left\langle D_{n}^{\mathfrak{I}}=\operatorname{Lim}_{n \rightarrow \infty}\left[\frac{n-1-\sqrt{n-2}}{n-1}\right]=1\right.$.
$\operatorname{Arat}\left\langle D_{n}^{\mathfrak{J}}=\frac{m^{\prime}}{n} \int \frac{n-1-\sqrt{n-2}}{n-1} d n=\frac{m^{\prime}}{n}\left[n-\int \frac{\sqrt{n-2}}{n-1} d n\right] ;\right.$ put $u^{2}=n-2 \Rightarrow 2 u d u=d n$
$\int \frac{\sqrt{n-2}}{n-1} d n=\int \frac{2 u^{2}}{u^{2}+1} d u ;$ pit $u=\tan v \Rightarrow 2 \int \frac{\tan ^{2} v}{\sec ^{2} v} \sec ^{2} v d v=2 \int\left(\sec ^{2} v-1\right) d v=2 \tan v-2 v$
$=2 \sqrt{n-2}-2 \arctan \sqrt{n-2}$.
Thus:
Arat $\left\langle D_{n}^{\mathfrak{J}}=\frac{m^{\prime}}{n}[n-2 \sqrt{n-2}-2 \arctan \sqrt{n-2}+c\right.$.
Taking $\mathrm{n}=3$ we get:
$c=\frac{\pi}{2}-1$.

5. CONCLUSION

In this paper we used the idea of energy difference between two graphs and the significance of the complete graph to formulate the eigen-complete difference ratio which allowed for the investigation of the domination effect that the energy of graphs have with respect to the complete graph when a large number of vertices are involved. This idea can be adopted by molecules with a large number of atoms where the need to examine molecules whose energy may dominate the molecule that is very well bonded. We found that a strongly regular graph dominated in the largest negative way, while the star graph with rays of length one had a domination effect of one- the largest possible positive domination effect. The Iollipop graph with base the complete graph had domination effect of zero.
We attached the average degree to the Riemann integral of this eigen-complete ratio to determine eigen-complete areas associated with classes of graphs and applied the above ideas to the complement of classes of graphs. We showed that the eigen-complete difference ratios of the complete-split bipartite graph and its complement are related by a differential equation with an associated quadratic sequence with second difference being a sequence with common difference of two.

6. REFERENCES

[1] Alon, N. and Spencer, J. H. 2011. Eigenvalues and Expanders. The Probabilistic Method (3rd ed.). John Wiley \&
Sons.
[2] Buckley, F. 1982.The central ratio of a graph.Discrete Mathematics.38(1): 17-21.
[3] Brualdi, R. A. 2006. Energy of graphs .Department of Mathematics.University of Wisconsin, Madison, WI 53706. brualdi@math.wisc.edu
[4] Gábor, S. 2006. Asymptotic values of the Hall-ratio for graph powers .Discrete Mathematics.306(19-20): 25932601.
[5] Gutman I. The energy of a graph, 10.1978. Steierm■arkischesMathematisches Symposium (Stift Rein, Graz),103, 1-22.
[6] Harris, J. M., Hirst, J. L. and Mossinghoff, M. 2008. Combinatorics and Graph theory.Springer, New York.
[7] Haemers, W. H. 2008. Strongly regular graphs with maximal energy. Linear Algebra and its Applications.
429 (11-12), 2719-2723.
[8] Haemers, W. H., Liu, X. and [8] Zhang, Y. 2008. Spectral characterizations of lollipop graphs.
Linear Algebra and its Applications. 428 (11-12), 2415-2423.
[9] Sarvate, D. and Winter, P. A. 2015. A fundamental theorem of multigraph decomposition of λ copies of $K_{m, n}$
. Toappear in Journal of Cobinatorial Mathematics and Combinatorial Computing.
[10] Winter, P. A. 2015. The Chromatic-Cover Ratio of a Graph: Domination, Areas and Farey Sequences. To appear in the International Journal of Mathematical Analysis.
[11] Winter, P. A. and Adewusi, F.J. 2014. Tree-cover ratio of graphs with asymptotic convergence identical to the secretary problem. Advances in Mathematics: Scientific Journal; Volume 3, issue 2, 47-61.
[12] Winter, P. A. and Jessop, C.L. 2015.Integral eigen-pair balanced classes of graphs: ratios, asymptotes, areas and involution complementary. To appear in: International Journal of Graph Theory.
[13] Winter, P. A. and Sarvate, D. 2014. The h-eigen energy formation number of h-decomposable classes of graphsformation ratios,asymptotes and power. Advances in Mathematics: Scientific Journal; Volume 3, issue 2, 133-147.
[14] Winter, P. A., Jessop, C. L. and Adewusi, F. J. 2015. The complete graph: eigenvalues, trigonometrical unit-equations with associated t -complete-eigen sequences, ratios, sums and diagrams. To appear in Journal of Mathematics and System Science.

